wav2vec2-large-mms-1b-somalia

This model is a fine-tuned version of facebook/mms-1b-all on the xtreme_s dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5553
  • Wer: 0.4330

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 2
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 100
  • num_epochs: 4
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
6.5097 0.0558 100 0.6980 0.4802
0.4771 0.1117 200 0.6315 0.4613
0.4098 0.1675 300 0.6112 0.4519
0.4555 0.2233 400 0.6085 0.4540
0.4319 0.2792 500 0.6041 0.4614
0.4582 0.3350 600 0.5927 0.4526
0.3879 0.3908 700 0.6079 0.4530
0.3919 0.4467 800 0.6135 0.4479
0.4245 0.5025 900 0.5879 0.4461
0.3872 0.5583 1000 0.6088 0.4627
0.3843 0.6142 1100 0.5939 0.4451
0.3842 0.6700 1200 0.6133 0.4631
0.3771 0.7259 1300 0.6026 0.4510
0.4458 0.7817 1400 0.5965 0.4494
0.4114 0.8375 1500 0.5950 0.4472
0.4135 0.8934 1600 0.6106 0.4613
0.3763 0.9492 1700 0.6082 0.4426
0.442 1.0050 1800 0.5922 0.4482
0.381 1.0609 1900 0.5827 0.4419
0.3874 1.1167 2000 0.5816 0.4518
0.4602 1.1725 2100 0.5888 0.4453
0.3709 1.2284 2200 0.5870 0.4447
0.3991 1.2842 2300 0.5749 0.4426
0.3771 1.3400 2400 0.5743 0.4396
0.351 1.3959 2500 0.5956 0.4414
0.358 1.4517 2600 0.5772 0.4368
0.4076 1.5075 2700 0.5931 0.4384
0.4322 1.5634 2800 0.5795 0.4407
0.359 1.6192 2900 0.5814 0.4408
0.3714 1.6750 3000 0.5794 0.4366
0.407 1.7309 3100 0.5673 0.4404
0.3803 1.7867 3200 0.5754 0.4453
0.3412 1.8425 3300 0.5974 0.4470
0.3826 1.8984 3400 0.5847 0.4422
0.3961 1.9542 3500 0.5800 0.4417
0.4035 2.0101 3600 0.5804 0.4395
0.3988 2.0659 3700 0.5626 0.4379
0.3642 2.1217 3800 0.5745 0.4393
0.3543 2.1776 3900 0.5786 0.4414
0.3577 2.2334 4000 0.5736 0.4376
0.3818 2.2892 4100 0.5745 0.4412
0.3538 2.3451 4200 0.5856 0.4370
0.3902 2.4009 4300 0.5708 0.4370
0.3915 2.4567 4400 0.5819 0.4372
0.3918 2.5126 4500 0.5620 0.4366
0.3716 2.5684 4600 0.5801 0.4497
0.3696 2.6242 4700 0.5640 0.4321
0.3532 2.6801 4800 0.5772 0.4418
0.4039 2.7359 4900 0.5660 0.4388
0.3488 2.7917 5000 0.5666 0.4364
0.3482 2.8476 5100 0.5662 0.4428
0.3793 2.9034 5200 0.5620 0.4368
0.3808 2.9592 5300 0.5559 0.4387
0.3403 3.0151 5400 0.5647 0.4387
0.3654 3.0709 5500 0.5515 0.4367
0.3614 3.1267 5600 0.5593 0.4410
0.3399 3.1826 5700 0.5604 0.4353
0.3627 3.2384 5800 0.5559 0.4379
0.3583 3.2942 5900 0.5564 0.4343
0.3897 3.3501 6000 0.5593 0.4362
0.3523 3.4059 6100 0.5578 0.4345
0.3412 3.4618 6200 0.5586 0.4346
0.3877 3.5176 6300 0.5529 0.4346
0.3605 3.5734 6400 0.5577 0.4346
0.3869 3.6293 6500 0.5522 0.4332
0.3906 3.6851 6600 0.5591 0.4312
0.3469 3.7409 6700 0.5585 0.4351
0.3665 3.7968 6800 0.5554 0.4333
0.3851 3.8526 6900 0.5543 0.4346
0.3195 3.9084 7000 0.5558 0.4348
0.346 3.9643 7100 0.5553 0.4330

Framework versions

  • Transformers 4.48.0.dev0
  • Pytorch 2.1.0+cu118
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
38
Safetensors
Model size
965M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for skydheere/wav2vec2-large-mms-1b-somalia

Finetuned
(258)
this model

Evaluation results