BGE base Financial Matryoshka
This is a sentence-transformers model finetuned from BAAI/bge-base-en-v1.5 on the json dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: BAAI/bge-base-en-v1.5
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
- Training Dataset:
- json
- Language: en
- License: apache-2.0
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("sintuk/bge-base-financial-matryoshka")
# Run inference
sentences = [
'Any such inquiries or investigations (including the IDPC proceedings) could subject us to substantial fines and costs, require us to change our business practices, divert resources and the attention of management from our business, or adversely affect our business.',
'What are some of the potential consequences for Meta Platforms, Inc. from inquiries or investigations as noted in the provided text?',
"What was the quarterly dividend declared by Bank of America's board of directors on January 31, 2024?",
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Information Retrieval
- Datasets:
dim_768
,dim_512
,dim_256
,dim_128
anddim_64
- Evaluated with
InformationRetrievalEvaluator
Metric | dim_768 | dim_512 | dim_256 | dim_128 | dim_64 |
---|---|---|---|---|---|
cosine_accuracy@1 | 0.7357 | 0.7271 | 0.73 | 0.7157 | 0.6929 |
cosine_accuracy@3 | 0.8557 | 0.8629 | 0.8429 | 0.8414 | 0.8171 |
cosine_accuracy@5 | 0.8957 | 0.89 | 0.8843 | 0.8671 | 0.8471 |
cosine_accuracy@10 | 0.9286 | 0.9329 | 0.9243 | 0.9186 | 0.8929 |
cosine_precision@1 | 0.7357 | 0.7271 | 0.73 | 0.7157 | 0.6929 |
cosine_precision@3 | 0.2852 | 0.2876 | 0.281 | 0.2805 | 0.2724 |
cosine_precision@5 | 0.1791 | 0.178 | 0.1769 | 0.1734 | 0.1694 |
cosine_precision@10 | 0.0929 | 0.0933 | 0.0924 | 0.0919 | 0.0893 |
cosine_recall@1 | 0.7357 | 0.7271 | 0.73 | 0.7157 | 0.6929 |
cosine_recall@3 | 0.8557 | 0.8629 | 0.8429 | 0.8414 | 0.8171 |
cosine_recall@5 | 0.8957 | 0.89 | 0.8843 | 0.8671 | 0.8471 |
cosine_recall@10 | 0.9286 | 0.9329 | 0.9243 | 0.9186 | 0.8929 |
cosine_ndcg@10 | 0.8338 | 0.8316 | 0.8269 | 0.817 | 0.7946 |
cosine_mrr@10 | 0.8032 | 0.7989 | 0.7956 | 0.7846 | 0.763 |
cosine_map@100 | 0.8062 | 0.8015 | 0.7986 | 0.7872 | 0.7668 |
Training Details
Training Dataset
json
- Dataset: json
- Size: 6,300 training samples
- Columns:
positive
andanchor
- Approximate statistics based on the first 1000 samples:
positive anchor type string string details - min: 6 tokens
- mean: 45.64 tokens
- max: 301 tokens
- min: 2 tokens
- mean: 20.4 tokens
- max: 42 tokens
- Samples:
positive anchor We later began working with commercial enterprises, who often faced fundamentally similar challenges in working with data.
What type of software solutions did Palantir later provide to commercial enterprises?
General Motors Company was incorporated as a Delaware corporation in 2009.
What year was General Motors Company incorporated?
Companies with which we have strategic partnerships in some areas may be competitors in other areas.
What is the nature of IBM's relationship with its strategic partners in competitional terms?
- Loss:
MatryoshkaLoss
with these parameters:{ "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 768, 512, 256, 128, 64 ], "matryoshka_weights": [ 1, 1, 1, 1, 1 ], "n_dims_per_step": -1 }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: epochper_device_train_batch_size
: 32per_device_eval_batch_size
: 16gradient_accumulation_steps
: 16learning_rate
: 2e-05num_train_epochs
: 4lr_scheduler_type
: cosinewarmup_ratio
: 0.1tf32
: Falseload_best_model_at_end
: Truebatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: epochprediction_loss_only
: Trueper_device_train_batch_size
: 32per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 16eval_accumulation_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 4max_steps
: -1lr_scheduler_type
: cosinelr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Falselocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseprompts
: Nonebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | dim_768_cosine_ndcg@10 | dim_512_cosine_ndcg@10 | dim_256_cosine_ndcg@10 | dim_128_cosine_ndcg@10 | dim_64_cosine_ndcg@10 |
---|---|---|---|---|---|---|---|
0.8122 | 10 | 1.6103 | - | - | - | - | - |
0.9746 | 12 | - | 0.8290 | 0.8247 | 0.8184 | 0.8110 | 0.7726 |
1.6244 | 20 | 0.6597 | - | - | - | - | - |
1.9492 | 24 | - | 0.8313 | 0.8290 | 0.8264 | 0.8161 | 0.7849 |
2.4365 | 30 | 0.5016 | - | - | - | - | - |
2.9239 | 36 | - | 0.8340 | 0.8323 | 0.8265 | 0.8170 | 0.7943 |
3.2487 | 40 | 0.4629 | - | - | - | - | - |
3.8985 | 48 | - | 0.8338 | 0.8316 | 0.8269 | 0.817 | 0.7946 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.12.9
- Sentence Transformers: 3.4.1
- Transformers: 4.41.2
- PyTorch: 2.2.2
- Accelerate: 1.5.2
- Datasets: 2.19.1
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 0
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for sintuk/bge-base-financial-matryoshka
Base model
BAAI/bge-base-en-v1.5Evaluation results
- Cosine Accuracy@1 on dim 768self-reported0.736
- Cosine Accuracy@3 on dim 768self-reported0.856
- Cosine Accuracy@5 on dim 768self-reported0.896
- Cosine Accuracy@10 on dim 768self-reported0.929
- Cosine Precision@1 on dim 768self-reported0.736
- Cosine Precision@3 on dim 768self-reported0.285
- Cosine Precision@5 on dim 768self-reported0.179
- Cosine Precision@10 on dim 768self-reported0.093
- Cosine Recall@1 on dim 768self-reported0.736
- Cosine Recall@3 on dim 768self-reported0.856