best_model-sst-2-64-13

This model is a fine-tuned version of bert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.3339
  • Accuracy: 0.8438

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 150

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 4 0.9854 0.8594
No log 2.0 8 0.9825 0.8594
0.3525 3.0 12 0.9791 0.8672
0.3525 4.0 16 0.9752 0.8672
0.2499 5.0 20 0.9700 0.8672
0.2499 6.0 24 0.9629 0.8594
0.2499 7.0 28 0.9588 0.8594
0.2671 8.0 32 0.9589 0.8516
0.2671 9.0 36 0.9573 0.8516
0.1578 10.0 40 0.9487 0.8516
0.1578 11.0 44 0.9428 0.8516
0.1578 12.0 48 0.9323 0.8516
0.1695 13.0 52 0.9192 0.8594
0.1695 14.0 56 0.9121 0.8516
0.106 15.0 60 0.9055 0.8516
0.106 16.0 64 0.8947 0.8594
0.106 17.0 68 0.8886 0.875
0.1075 18.0 72 0.8914 0.8672
0.1075 19.0 76 0.8882 0.8672
0.0226 20.0 80 0.8871 0.8672
0.0226 21.0 84 0.8825 0.8594
0.0226 22.0 88 0.8841 0.8594
0.0045 23.0 92 0.8858 0.8672
0.0045 24.0 96 0.8902 0.875
0.0108 25.0 100 0.8941 0.8672
0.0108 26.0 104 0.8965 0.8672
0.0108 27.0 108 0.9028 0.8594
0.0242 28.0 112 0.9052 0.8594
0.0242 29.0 116 0.9104 0.8594
0.0004 30.0 120 0.9156 0.8594
0.0004 31.0 124 0.9166 0.8594
0.0004 32.0 128 0.9117 0.8594
0.0004 33.0 132 0.9111 0.8594
0.0004 34.0 136 0.9245 0.875
0.0011 35.0 140 0.9451 0.8594
0.0011 36.0 144 0.9664 0.8516
0.0011 37.0 148 0.9794 0.8359
0.0002 38.0 152 0.9838 0.8359
0.0002 39.0 156 0.9680 0.8594
0.0003 40.0 160 0.9540 0.8516
0.0003 41.0 164 0.9479 0.8672
0.0003 42.0 168 0.9734 0.8516
0.0003 43.0 172 0.9954 0.8516
0.0003 44.0 176 1.0139 0.8594
0.0002 45.0 180 1.0285 0.8516
0.0002 46.0 184 1.0383 0.8359
0.0002 47.0 188 1.0443 0.8359
0.0002 48.0 192 1.0474 0.8359
0.0002 49.0 196 1.0490 0.8359
0.0004 50.0 200 1.0141 0.8516
0.0004 51.0 204 0.9861 0.8672
0.0004 52.0 208 0.9913 0.8672
0.0204 53.0 212 1.0418 0.8594
0.0204 54.0 216 1.0818 0.8438
0.0002 55.0 220 1.1084 0.8359
0.0002 56.0 224 1.1198 0.8438
0.0002 57.0 228 1.1048 0.8359
0.0002 58.0 232 1.0871 0.8516
0.0002 59.0 236 1.0756 0.8516
0.0002 60.0 240 1.0676 0.8516
0.0002 61.0 244 1.0631 0.8516
0.0002 62.0 248 1.0605 0.8516
0.0001 63.0 252 1.0594 0.8594
0.0001 64.0 256 1.0592 0.8516
0.0001 65.0 260 1.0597 0.8594
0.0001 66.0 264 1.0594 0.8594
0.0001 67.0 268 1.0597 0.8516
0.0001 68.0 272 1.0606 0.8516
0.0001 69.0 276 1.0794 0.8516
0.0003 70.0 280 1.1418 0.8438
0.0003 71.0 284 1.1868 0.8516
0.0003 72.0 288 1.2120 0.8516
0.0001 73.0 292 1.2064 0.8516
0.0001 74.0 296 1.1566 0.8438
0.0002 75.0 300 1.1006 0.8516
0.0002 76.0 304 1.0705 0.8516
0.0002 77.0 308 1.0654 0.8516
0.0001 78.0 312 1.0651 0.8594
0.0001 79.0 316 1.0659 0.8594
0.0001 80.0 320 1.0674 0.8516
0.0001 81.0 324 1.0691 0.8516
0.0001 82.0 328 1.0786 0.8516
0.0001 83.0 332 1.0875 0.8516
0.0001 84.0 336 1.0948 0.8438
0.0001 85.0 340 1.1004 0.8438
0.0001 86.0 344 1.1058 0.8438
0.0001 87.0 348 1.1103 0.8438
0.0001 88.0 352 1.1136 0.8438
0.0001 89.0 356 1.1162 0.8438
0.0001 90.0 360 1.1180 0.8438
0.0001 91.0 364 1.1119 0.8438
0.0001 92.0 368 1.1084 0.8438
0.0001 93.0 372 1.1066 0.8516
0.0001 94.0 376 1.1059 0.8516
0.0001 95.0 380 1.1059 0.8516
0.0001 96.0 384 1.1065 0.8516
0.0001 97.0 388 1.1084 0.8516
0.0064 98.0 392 1.1955 0.8438
0.0064 99.0 396 1.2544 0.8516
0.0001 100.0 400 1.3053 0.8359
0.0001 101.0 404 1.3606 0.8281
0.0001 102.0 408 1.3399 0.8281
0.0068 103.0 412 1.2648 0.8516
0.0068 104.0 416 1.1161 0.8516
0.0001 105.0 420 1.0830 0.8594
0.0001 106.0 424 1.1095 0.8672
0.0001 107.0 428 1.0817 0.8672
0.0139 108.0 432 1.1057 0.8516
0.0139 109.0 436 1.1392 0.8438
0.0001 110.0 440 1.1623 0.8438
0.0001 111.0 444 1.1707 0.8438
0.0001 112.0 448 1.1766 0.8438
0.0001 113.0 452 1.1808 0.8516
0.0001 114.0 456 1.1826 0.8516
0.0001 115.0 460 1.1809 0.8438
0.0001 116.0 464 1.1380 0.8438
0.0001 117.0 468 1.1289 0.8594
0.0001 118.0 472 1.1853 0.8594
0.0001 119.0 476 1.2030 0.8594
0.0001 120.0 480 1.1913 0.8594
0.0001 121.0 484 1.1660 0.8672
0.0001 122.0 488 1.1591 0.8594
0.0001 123.0 492 1.1678 0.8438
0.0001 124.0 496 1.1800 0.8516
0.0001 125.0 500 1.1896 0.8516
0.0001 126.0 504 1.1972 0.8516
0.0001 127.0 508 1.2034 0.8516
0.0001 128.0 512 1.2074 0.8438
0.0001 129.0 516 1.2104 0.8438
0.0 130.0 520 1.2126 0.8438
0.0 131.0 524 1.1920 0.8672
0.0 132.0 528 1.2214 0.8516
0.0007 133.0 532 1.2321 0.8516
0.0007 134.0 536 1.2382 0.8516
0.0001 135.0 540 1.2297 0.8516
0.0001 136.0 544 1.1786 0.8516
0.0001 137.0 548 1.2126 0.8516
0.0001 138.0 552 1.2706 0.8516
0.0001 139.0 556 1.2978 0.8516
0.0 140.0 560 1.3119 0.8516
0.0 141.0 564 1.3222 0.8438
0.0 142.0 568 1.3290 0.8438
0.0 143.0 572 1.3333 0.8438
0.0 144.0 576 1.3357 0.8438
0.0 145.0 580 1.3371 0.8438
0.0 146.0 584 1.3371 0.8438
0.0 147.0 588 1.3353 0.8438
0.0001 148.0 592 1.3344 0.8438
0.0001 149.0 596 1.3340 0.8438
0.0 150.0 600 1.3339 0.8438

Framework versions

  • Transformers 4.32.0.dev0
  • Pytorch 2.0.1+cu118
  • Datasets 2.4.0
  • Tokenizers 0.13.3
Downloads last month
8
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for simonycl/best_model-sst-2-64-13

Finetuned
(2370)
this model