model1_test

This model is a fine-tuned version of DaNLP/da-bert-hatespeech-detection on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1816
  • Accuracy: 0.9667
  • F1: 0.3548

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 3.0

Training results

Training Loss Epoch Step Validation Loss Accuracy F1
No log 1.0 150 0.1128 0.9667 0.2
No log 2.0 300 0.1666 0.9684 0.2963
No log 3.0 450 0.1816 0.9667 0.3548

Framework versions

  • Transformers 4.12.5
  • Pytorch 1.10.0+cu111
  • Datasets 1.16.1
  • Tokenizers 0.10.3
Downloads last month
4
Hosted inference API
Text Classification
Examples
Examples
Mask token: [MASK]
This model can be loaded on the Inference API on-demand.