DNADebertaK6_Zebrafish
This model is a fine-tuned version of on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.4958
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 600001
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
4.1727 | 0.59 | 20000 | 1.8535 |
1.8381 | 1.18 | 40000 | 1.7512 |
1.7561 | 1.77 | 60000 | 1.7235 |
1.7281 | 2.36 | 80000 | 1.7019 |
1.7065 | 2.95 | 100000 | 1.6822 |
1.6876 | 3.54 | 120000 | 1.6639 |
1.6718 | 4.13 | 140000 | 1.6501 |
1.6562 | 4.71 | 160000 | 1.6350 |
1.6429 | 5.3 | 180000 | 1.6211 |
1.6313 | 5.89 | 200000 | 1.6102 |
1.6207 | 6.48 | 220000 | 1.6001 |
1.6099 | 7.07 | 240000 | 1.5902 |
1.6 | 7.66 | 260000 | 1.5799 |
1.5925 | 8.25 | 280000 | 1.5726 |
1.5847 | 8.84 | 300000 | 1.5645 |
1.5783 | 9.43 | 320000 | 1.5596 |
1.5712 | 10.02 | 340000 | 1.5510 |
1.5656 | 10.61 | 360000 | 1.5452 |
1.5598 | 11.2 | 380000 | 1.5410 |
1.5548 | 11.79 | 400000 | 1.5342 |
1.5497 | 12.38 | 420000 | 1.5293 |
1.546 | 12.96 | 440000 | 1.5241 |
1.5397 | 13.55 | 460000 | 1.5214 |
1.5365 | 14.14 | 480000 | 1.5164 |
1.5321 | 14.73 | 500000 | 1.5115 |
1.5285 | 15.32 | 520000 | 1.5075 |
1.5246 | 15.91 | 540000 | 1.5034 |
1.5217 | 16.5 | 560000 | 1.5029 |
1.5191 | 17.09 | 580000 | 1.4995 |
1.516 | 17.68 | 600000 | 1.4958 |
Framework versions
- Transformers 4.19.2
- Pytorch 1.11.0
- Datasets 2.2.2
- Tokenizers 0.12.1
- Downloads last month
- 2
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.