led-risalah_data_v2
This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.7850
- Rouge1 Precision: 0.816
- Rouge1 Recall: 0.2149
- Rouge1 Fmeasure: 0.3393
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Rouge1 Fmeasure | Rouge1 Precision | Rouge1 Recall |
---|---|---|---|---|---|---|
2.4163 | 0.9143 | 8 | 1.9482 | 0.2001 | 0.4982 | 0.1254 |
1.6578 | 1.9429 | 17 | 1.8076 | 0.2489 | 0.6295 | 0.1554 |
1.656 | 2.9143 | 24 | 1.4664 | 0.2459 | 0.6118 | 0.154 |
1.5142 | 3.9429 | 33 | 1.4191 | 0.2546 | 0.646 | 0.159 |
1.4169 | 4.9714 | 42 | 1.4162 | 0.27 | 0.6675 | 0.1698 |
1.4123 | 6.9143 | 56 | 1.3197 | 0.2807 | 0.7054 | 0.1755 |
1.3398 | 7.9429 | 65 | 1.3156 | 0.2797 | 0.6912 | 0.1759 |
1.146 | 8.9714 | 74 | 1.3247 | 0.2925 | 0.728 | 0.1834 |
1.1481 | 10.0 | 83 | 1.3366 | 0.2739 | 0.6799 | 0.1718 |
1.2033 | 10.9143 | 91 | 1.3387 | 0.2789 | 0.69 | 0.1752 |
1.0855 | 11.9429 | 100 | 1.3375 | 0.2888 | 0.7146 | 0.1814 |
0.999 | 12.9714 | 109 | 1.3589 | 0.2922 | 0.7265 | 0.1831 |
1.0034 | 14.0 | 118 | 1.3601 | 0.2872 | 0.7157 | 0.1801 |
0.9831 | 14.9143 | 126 | 1.3762 | 0.2851 | 0.7024 | 0.1792 |
0.9347 | 15.9429 | 135 | 1.3743 | 0.2769 | 0.6841 | 0.174 |
0.9018 | 16.9714 | 144 | 1.3820 | 0.2862 | 0.7139 | 0.1797 |
0.8939 | 18.0 | 153 | 1.3841 | 0.2879 | 0.7134 | 0.1806 |
Framework versions
- Transformers 4.42.3
- Pytorch 2.3.0+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1
- Downloads last month
- 3
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.