SentenceTransformer based on BAAI/bge-base-en-v1.5
This is a sentence-transformers model finetuned from BAAI/bge-base-en-v1.5. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: BAAI/bge-base-en-v1.5
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
'show me list of Employee department details',
'Update the employee dependent marital status to Married',
'Display the average performance rating of employees in the marketing department',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Information Retrieval
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.9259 |
cosine_accuracy@3 | 0.963 |
cosine_accuracy@5 | 0.963 |
cosine_accuracy@10 | 0.963 |
cosine_precision@1 | 0.9259 |
cosine_precision@3 | 0.9136 |
cosine_precision@5 | 0.9185 |
cosine_precision@10 | 0.9111 |
cosine_recall@1 | 0.0492 |
cosine_recall@3 | 0.1401 |
cosine_recall@5 | 0.234 |
cosine_recall@10 | 0.4538 |
cosine_ndcg@10 | 0.9289 |
cosine_mrr@10 | 0.9444 |
cosine_map@100 | 0.9023 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 2,441 training samples
- Columns:
sentence_0
andsentence_1
- Approximate statistics based on the first 1000 samples:
sentence_0 sentence_1 type string string details - min: 7 tokens
- mean: 7.37 tokens
- max: 10 tokens
- min: 5 tokens
- mean: 9.75 tokens
- max: 18 tokens
- Samples:
sentence_0 sentence_1 Show me list of applicant
Show applicant rating
Show me list of applicant
Update my objective statement
Show me list of applicant
Update my job title preferences
- Loss:
MultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 30per_device_eval_batch_size
: 30num_train_epochs
: 111multi_dataset_batch_sampler
: round_robin
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 30per_device_eval_batch_size
: 30per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1num_train_epochs
: 111max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.0warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: round_robin
Training Logs
Epoch | Step | Training Loss | cosine_ndcg@10 |
---|---|---|---|
0.6098 | 50 | - | 0.5941 |
1.0 | 82 | - | 0.6506 |
1.2195 | 100 | - | 0.6689 |
1.8293 | 150 | - | 0.6894 |
2.0 | 164 | - | 0.6963 |
2.4390 | 200 | - | 0.7201 |
3.0 | 246 | - | 0.7488 |
3.0488 | 250 | - | 0.7519 |
3.6585 | 300 | - | 0.7863 |
4.0 | 328 | - | 0.8176 |
4.2683 | 350 | - | 0.8238 |
4.8780 | 400 | - | 0.8320 |
5.0 | 410 | - | 0.8471 |
5.4878 | 450 | - | 0.8525 |
6.0 | 492 | - | 0.8568 |
6.0976 | 500 | 1.6965 | 0.8533 |
6.7073 | 550 | - | 0.8646 |
7.0 | 574 | - | 0.8631 |
7.3171 | 600 | - | 0.8676 |
7.9268 | 650 | - | 0.8718 |
8.0 | 656 | - | 0.8765 |
8.5366 | 700 | - | 0.8764 |
9.0 | 738 | - | 0.8845 |
9.1463 | 750 | - | 0.8778 |
9.7561 | 800 | - | 0.8894 |
10.0 | 820 | - | 0.8848 |
10.3659 | 850 | - | 0.9048 |
10.9756 | 900 | - | 0.9029 |
11.0 | 902 | - | 0.9026 |
11.5854 | 950 | - | 0.8995 |
12.0 | 984 | - | 0.8956 |
12.1951 | 1000 | 1.0614 | 0.8922 |
12.8049 | 1050 | - | 0.9043 |
13.0 | 1066 | - | 0.9103 |
13.4146 | 1100 | - | 0.9057 |
14.0 | 1148 | - | 0.9097 |
14.0244 | 1150 | - | 0.9096 |
14.6341 | 1200 | - | 0.9223 |
15.0 | 1230 | - | 0.9258 |
15.2439 | 1250 | - | 0.9118 |
15.8537 | 1300 | - | 0.9207 |
16.0 | 1312 | - | 0.9239 |
16.4634 | 1350 | - | 0.9250 |
17.0 | 1394 | - | 0.9161 |
17.0732 | 1400 | - | 0.9203 |
17.6829 | 1450 | - | 0.9146 |
18.0 | 1476 | - | 0.9198 |
18.2927 | 1500 | 0.9705 | 0.9197 |
18.9024 | 1550 | - | 0.9250 |
19.0 | 1558 | - | 0.9248 |
19.5122 | 1600 | - | 0.9289 |
Framework Versions
- Python: 3.12.7
- Sentence Transformers: 3.3.0
- Transformers: 4.46.2
- PyTorch: 2.5.1
- Accelerate: 0.26.0
- Datasets: 3.1.0
- Tokenizers: 0.20.3
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 32
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for shubhamrathore081/bge_base_en_1.5_ft
Base model
BAAI/bge-base-en-v1.5Evaluation results
- Cosine Accuracy@1 on Unknownself-reported0.926
- Cosine Accuracy@3 on Unknownself-reported0.963
- Cosine Accuracy@5 on Unknownself-reported0.963
- Cosine Accuracy@10 on Unknownself-reported0.963
- Cosine Precision@1 on Unknownself-reported0.926
- Cosine Precision@3 on Unknownself-reported0.914
- Cosine Precision@5 on Unknownself-reported0.919
- Cosine Precision@10 on Unknownself-reported0.911
- Cosine Recall@1 on Unknownself-reported0.049
- Cosine Recall@3 on Unknownself-reported0.140