See axolotl config
axolotl version: 0.4.0
base_model: Qwen/Qwen2-7B-Instruct
load_in_8bit: false
load_in_4bit: false
strict: false
chat_template: chatml
datasets:
# This will be the path used for the data when it is saved to the Volume in the cloud.
- path: augmxnt/ultra-orca-boros-en-ja-v1
ds_type: json
type: sharegpt
dataset_prepared_path: last_run_prepared
val_set_size: 0.05
output_dir: ./out
sequence_len: 8192
sample_packing: true
pad_to_sequence_len: true
neftune_noise_alpha: 5
use_wandb: true
wandb_project: shisa-v2
wandb_entity: augmxnt
wandb_name: shisa-v1-qwen2-7b
gradient_accumulation_steps: 8
micro_batch_size: 1
num_epochs: 3
optimizer: paged_adamw_8bit
lr_scheduler: linear
learning_rate: 8e-6
train_on_inputs: false
group_by_length: false
bf16: true
fp16: false
tf32: false
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
warmup_steps: 100
eval_per_epoch: 2
eval_table_size:
saves_per_epoch: 0
save_steps:
debug:
deepspeed: /workspace/axolotl/deepspeed_configs/zero3_bf16.json
weight_decay: 0.01
fsdp:
fsdp_config:
special_tokens:
pad_token: <|endoftext|>
out
This model is a fine-tuned version of Qwen/Qwen2-7B-Instruct on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.5239
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 8e-06
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- total_eval_batch_size: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
0.8276 | 1.0196 | 319 | 0.5273 |
0.6577 | 2.0164 | 637 | 0.5103 |
0.5808 | 2.9541 | 936 | 0.5239 |
Framework versions
- Transformers 4.40.2
- Pytorch 2.2.2+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1
- Downloads last month
- 23
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.