sft
This model is a fine-tuned version of /home/Meta-Llama-3-8B-Instruct on the alpaca_zh_demo, the identity and the teachers_exam_local datasets. It achieves the following results on the evaluation set:
- Loss: 1.5271
这个模型是Meta-Llama-3-8B-Instruct在identity和teachers_exam_local数据集上的微调版本。 在评估集上得到如下结果:
- Loss: 1.5271
Model description
This Model is based Meta-Llama3-8B-Instruct finetuning.
Intended uses & limitations
No limit,everyone can use it. 无限制使用,任何人都可以使用。
Training and evaluation data
Used high qulity datas with Teachers Exam.The data include choice,multi-choice,etc types subjects. 使用高质量的数据与教师考试。数据包括选择题、多项选择题等类型的题目。
#大模型评测 benchmark(mmlu)
Average: 66.89
STEM: 57.52
Social Sciences: 76.28
Humanities: 62.32
Other: 73.32
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 2
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 100
- num_epochs: 8.0
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
2.2507 | 0.1895 | 50 | 1.9127 |
1.8486 | 0.3790 | 100 | 1.6928 |
1.7402 | 0.5685 | 150 | 1.6263 |
1.6577 | 0.7579 | 200 | 1.5895 |
1.6681 | 0.9474 | 250 | 1.5667 |
1.5953 | 1.1369 | 300 | 1.5586 |
1.5308 | 1.3264 | 350 | 1.5557 |
1.5432 | 1.5159 | 400 | 1.5500 |
1.5724 | 1.7054 | 450 | 1.5392 |
1.5135 | 1.8948 | 500 | 1.5271 |
1.4324 | 2.0843 | 550 | 1.5466 |
1.3993 | 2.2738 | 600 | 1.5391 |
1.4099 | 2.4633 | 650 | 1.5434 |
1.3764 | 2.6528 | 700 | 1.5400 |
1.3219 | 2.8423 | 750 | 1.5354 |
1.3678 | 3.0317 | 800 | 1.5719 |
1.263 | 3.2212 | 850 | 1.5781 |
1.228 | 3.4107 | 900 | 1.5834 |
1.2743 | 3.6002 | 950 | 1.5766 |
1.2456 | 3.7897 | 1000 | 1.5617 |
1.2192 | 3.9792 | 1050 | 1.5626 |
1.0889 | 4.1686 | 1100 | 1.6138 |
1.156 | 4.3581 | 1150 | 1.6190 |
1.1111 | 4.5476 | 1200 | 1.6066 |
1.1222 | 4.7371 | 1250 | 1.6185 |
1.1102 | 4.9266 | 1300 | 1.6020 |
1.042 | 5.1161 | 1350 | 1.6649 |
0.9666 | 5.3055 | 1400 | 1.6663 |
1.0506 | 5.4950 | 1450 | 1.6709 |
1.035 | 5.6845 | 1500 | 1.6592 |
1.0121 | 5.8740 | 1550 | 1.6589 |
0.968 | 6.0635 | 1600 | 1.7109 |
0.9422 | 6.2530 | 1650 | 1.7100 |
0.9571 | 6.4424 | 1700 | 1.7004 |
0.9546 | 6.6319 | 1750 | 1.6982 |
0.9965 | 6.8214 | 1800 | 1.7010 |
0.9433 | 7.0109 | 1850 | 1.7062 |
0.9193 | 7.2004 | 1900 | 1.7224 |
0.89 | 7.3899 | 1950 | 1.7259 |
0.901 | 7.5793 | 2000 | 1.7271 |
0.9101 | 7.7688 | 2050 | 1.7280 |
0.9108 | 7.9583 | 2100 | 1.7280 |
Framework versions
- PEFT 0.12.0
- Transformers 4.43.4
- Pytorch 2.4.0+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1
- Downloads last month
- 14
Inference API (serverless) does not yet support peft models for this pipeline type.