T5 for Chinese Spelling Correction Model
中文拼写纠错模型
shibing624/mengzi-t5-base-chinese-correction
evaluate SIGHAN2015 test data:
- Sentence Level: precision:0.8321, recall:0.6390, f1:0.7229
训练使用的数据集为下方提供的“SIGHAN+Wang271K中文纠错数据集”,在SIGHAN2015的测试集上达到接近SOTA水平。
未改动模型结构,finetune中文纠错数据集,评估纠错效果很好,模型潜力巨大。
Usage
本项目开源在中文文本纠错项目:pycorrector,可支持t5模型,通过如下命令调用:
pip install -U pycorrector
run:
from pycorrector.t5.t5_corrector import T5Corrector
nlp = T5Corrector("shibing624/mengzi-t5-base-chinese-correction").batch_t5_correct
i = "今天新情很好"
print(i, ' => ', nlp([i]))
output:
今天新情很好 => 今天心情很好 [('新', '心', 2, 3)]
模型文件组成:
mengzi-t5-base-chinese-correction
|-- config.json
|-- pytorch_model.bin
|-- special_tokens_map.json
|-- spiece.model
|-- tokenizer_config.json
`-- tokenizer.json
如果需要训练t5-correction,请参考https://github.com/shibing624/pycorrector/tree/master/pycorrector/t5
训练数据集
SIGHAN+Wang271K中文纠错数据集
数据集 | 语料 | 下载链接 | 压缩包大小 |
---|---|---|---|
SIGHAN+Wang271K中文纠错数据集 |
SIGHAN+Wang271K(27万条) | 百度网盘(密码01b9) | 106M |
原始SIGHAN数据集 |
SIGHAN13 14 15 | 官方csc.html | 339K |
原始Wang271K数据集 |
Wang271K | Automatic-Corpus-Generation dimmywang提供 | 93M |
SIGHAN+Wang271K中文纠错数据集,数据格式:
[
{
"id": "B2-4029-3",
"original_text": "晚间会听到嗓音,白天的时候大家都不会太在意,但是在睡觉的时候这嗓音成为大家的恶梦。",
"wrong_ids": [
5,
31
],
"correct_text": "晚间会听到噪音,白天的时候大家都不会太在意,但是在睡觉的时候这噪音成为大家的恶梦。"
},
]
Citation
@software{pycorrector,
author = {Xu Ming},
title = {pycorrector: Text Error Correction Tool},
year = {2021},
url = {https://github.com/shibing624/pycorrector},
}
- Downloads last month
- 1,190
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.