Adding Evaluation Results
#38
by
leaderboard-pr-bot
- opened
README.md
CHANGED
@@ -1,14 +1,117 @@
|
|
1 |
---
|
2 |
-
license: llama3
|
3 |
-
library_name: transformers
|
4 |
-
pipeline_tag: text-generation
|
5 |
-
base_model: meta-llama/Meta-Llama-3-8B-Instruct
|
6 |
language:
|
7 |
- en
|
8 |
- zh
|
|
|
|
|
9 |
tags:
|
10 |
- llama-factory
|
11 |
- orpo
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
---
|
13 |
|
14 |
🚀 [May 9, 2024] We're excited to introduce [Llama3-**70B**-Chinese-Chat](https://huggingface.co/shenzhi-wang/Llama3-70B-Chinese-Chat)! Full-parameter fine-tuned on a mixed Chinese-English dataset of ~100K preference pairs, its Chinese performance **surpasses ChatGPT** and **matches GPT-4**, as shown by C-Eval and CMMLU results. [Llama3-**70B**-Chinese-Chat](https://huggingface.co/shenzhi-wang/Llama3-70B-Chinese-Chat) is much more powerful than Llama3-8B-Chinese-Chat. If you love our Llama3-8B-Chinese-Chat, you must have a try on our [Llama3-**70B**-Chinese-Chat](https://huggingface.co/shenzhi-wang/Llama3-70B-Chinese-Chat)!
|
@@ -1047,4 +1150,17 @@ int main() {
|
|
1047 |
请注意,这段代码假设输入文本和模式字符串只包含小写英文字母和中文字符。如果需要处理其他字符集,可能需要适当调整。
|
1048 |
|
1049 |
</details>
|
1050 |
-
<br />
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
|
|
|
|
|
|
|
|
2 |
language:
|
3 |
- en
|
4 |
- zh
|
5 |
+
license: llama3
|
6 |
+
library_name: transformers
|
7 |
tags:
|
8 |
- llama-factory
|
9 |
- orpo
|
10 |
+
base_model: meta-llama/Meta-Llama-3-8B-Instruct
|
11 |
+
pipeline_tag: text-generation
|
12 |
+
model-index:
|
13 |
+
- name: Llama3-8B-Chinese-Chat
|
14 |
+
results:
|
15 |
+
- task:
|
16 |
+
type: text-generation
|
17 |
+
name: Text Generation
|
18 |
+
dataset:
|
19 |
+
name: AI2 Reasoning Challenge (25-Shot)
|
20 |
+
type: ai2_arc
|
21 |
+
config: ARC-Challenge
|
22 |
+
split: test
|
23 |
+
args:
|
24 |
+
num_few_shot: 25
|
25 |
+
metrics:
|
26 |
+
- type: acc_norm
|
27 |
+
value: 61.77
|
28 |
+
name: normalized accuracy
|
29 |
+
source:
|
30 |
+
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=shenzhi-wang/Llama3-8B-Chinese-Chat
|
31 |
+
name: Open LLM Leaderboard
|
32 |
+
- task:
|
33 |
+
type: text-generation
|
34 |
+
name: Text Generation
|
35 |
+
dataset:
|
36 |
+
name: HellaSwag (10-Shot)
|
37 |
+
type: hellaswag
|
38 |
+
split: validation
|
39 |
+
args:
|
40 |
+
num_few_shot: 10
|
41 |
+
metrics:
|
42 |
+
- type: acc_norm
|
43 |
+
value: 80.07
|
44 |
+
name: normalized accuracy
|
45 |
+
source:
|
46 |
+
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=shenzhi-wang/Llama3-8B-Chinese-Chat
|
47 |
+
name: Open LLM Leaderboard
|
48 |
+
- task:
|
49 |
+
type: text-generation
|
50 |
+
name: Text Generation
|
51 |
+
dataset:
|
52 |
+
name: MMLU (5-Shot)
|
53 |
+
type: cais/mmlu
|
54 |
+
config: all
|
55 |
+
split: test
|
56 |
+
args:
|
57 |
+
num_few_shot: 5
|
58 |
+
metrics:
|
59 |
+
- type: acc
|
60 |
+
value: 66.97
|
61 |
+
name: accuracy
|
62 |
+
source:
|
63 |
+
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=shenzhi-wang/Llama3-8B-Chinese-Chat
|
64 |
+
name: Open LLM Leaderboard
|
65 |
+
- task:
|
66 |
+
type: text-generation
|
67 |
+
name: Text Generation
|
68 |
+
dataset:
|
69 |
+
name: TruthfulQA (0-shot)
|
70 |
+
type: truthful_qa
|
71 |
+
config: multiple_choice
|
72 |
+
split: validation
|
73 |
+
args:
|
74 |
+
num_few_shot: 0
|
75 |
+
metrics:
|
76 |
+
- type: mc2
|
77 |
+
value: 51.41
|
78 |
+
source:
|
79 |
+
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=shenzhi-wang/Llama3-8B-Chinese-Chat
|
80 |
+
name: Open LLM Leaderboard
|
81 |
+
- task:
|
82 |
+
type: text-generation
|
83 |
+
name: Text Generation
|
84 |
+
dataset:
|
85 |
+
name: Winogrande (5-shot)
|
86 |
+
type: winogrande
|
87 |
+
config: winogrande_xl
|
88 |
+
split: validation
|
89 |
+
args:
|
90 |
+
num_few_shot: 5
|
91 |
+
metrics:
|
92 |
+
- type: acc
|
93 |
+
value: 75.22
|
94 |
+
name: accuracy
|
95 |
+
source:
|
96 |
+
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=shenzhi-wang/Llama3-8B-Chinese-Chat
|
97 |
+
name: Open LLM Leaderboard
|
98 |
+
- task:
|
99 |
+
type: text-generation
|
100 |
+
name: Text Generation
|
101 |
+
dataset:
|
102 |
+
name: GSM8k (5-shot)
|
103 |
+
type: gsm8k
|
104 |
+
config: main
|
105 |
+
split: test
|
106 |
+
args:
|
107 |
+
num_few_shot: 5
|
108 |
+
metrics:
|
109 |
+
- type: acc
|
110 |
+
value: 67.17
|
111 |
+
name: accuracy
|
112 |
+
source:
|
113 |
+
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=shenzhi-wang/Llama3-8B-Chinese-Chat
|
114 |
+
name: Open LLM Leaderboard
|
115 |
---
|
116 |
|
117 |
🚀 [May 9, 2024] We're excited to introduce [Llama3-**70B**-Chinese-Chat](https://huggingface.co/shenzhi-wang/Llama3-70B-Chinese-Chat)! Full-parameter fine-tuned on a mixed Chinese-English dataset of ~100K preference pairs, its Chinese performance **surpasses ChatGPT** and **matches GPT-4**, as shown by C-Eval and CMMLU results. [Llama3-**70B**-Chinese-Chat](https://huggingface.co/shenzhi-wang/Llama3-70B-Chinese-Chat) is much more powerful than Llama3-8B-Chinese-Chat. If you love our Llama3-8B-Chinese-Chat, you must have a try on our [Llama3-**70B**-Chinese-Chat](https://huggingface.co/shenzhi-wang/Llama3-70B-Chinese-Chat)!
|
|
|
1150 |
请注意,这段代码假设输入文本和模式字符串只包含小写英文字母和中文字符。如果需要处理其他字符集,可能需要适当调整。
|
1151 |
|
1152 |
</details>
|
1153 |
+
<br />
|
1154 |
+
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
|
1155 |
+
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_shenzhi-wang__Llama3-8B-Chinese-Chat)
|
1156 |
+
|
1157 |
+
| Metric |Value|
|
1158 |
+
|---------------------------------|----:|
|
1159 |
+
|Avg. |67.10|
|
1160 |
+
|AI2 Reasoning Challenge (25-Shot)|61.77|
|
1161 |
+
|HellaSwag (10-Shot) |80.07|
|
1162 |
+
|MMLU (5-Shot) |66.97|
|
1163 |
+
|TruthfulQA (0-shot) |51.41|
|
1164 |
+
|Winogrande (5-shot) |75.22|
|
1165 |
+
|GSM8k (5-shot) |67.17|
|
1166 |
+
|