vit-epsilon-5e-9

This model is a fine-tuned version of google/vit-base-patch16-224 on the skin-cancer dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4961
  • Accuracy: 0.8252
  • Precision: 0.8358
  • Recall: 0.8252
  • F1: 0.8286

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.99) and epsilon=5e-09
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 1733
  • num_epochs: 100
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
1.7673 1.0 321 0.9546 0.6890 0.6435 0.6890 0.6302
1.1951 2.0 642 0.7244 0.7438 0.7325 0.7438 0.7199
1.0711 3.0 963 0.6499 0.7552 0.7394 0.7552 0.7224
0.9944 4.0 1284 0.5907 0.7590 0.7962 0.7590 0.7683
0.9231 5.0 1605 0.6988 0.7084 0.8054 0.7084 0.7306
0.9889 6.0 1926 0.5912 0.7746 0.7919 0.7746 0.7808
0.8818 7.0 2247 0.6374 0.7569 0.8001 0.7569 0.7697
0.7973 8.0 2568 0.6658 0.7580 0.7925 0.7580 0.7684
0.7525 9.0 2889 0.5220 0.8044 0.8124 0.8044 0.8068
0.6938 10.0 3210 0.5634 0.7899 0.8335 0.7899 0.7980
0.6354 11.0 3531 0.4961 0.8252 0.8358 0.8252 0.8286
0.5602 12.0 3852 0.5486 0.8141 0.8276 0.8141 0.8185
0.44 13.0 4173 0.6554 0.8141 0.8442 0.8141 0.8155
0.4704 14.0 4494 0.5704 0.8235 0.8431 0.8235 0.8287
0.4275 15.0 4815 0.5563 0.8141 0.8459 0.8141 0.8230
0.3511 16.0 5136 0.5933 0.8072 0.8402 0.8072 0.8166
0.2853 17.0 5457 0.5246 0.8436 0.8542 0.8436 0.8470
0.2691 18.0 5778 0.5257 0.8509 0.8551 0.8509 0.8519
0.2134 19.0 6099 0.6391 0.8332 0.8553 0.8332 0.8404
0.224 20.0 6420 0.6297 0.8488 0.8537 0.8488 0.8497
0.1843 21.0 6741 0.6199 0.8582 0.8561 0.8582 0.8541

Framework versions

  • Transformers 4.40.0.dev0
  • Pytorch 2.2.1+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2
Downloads last month
24
Safetensors
Model size
85.8M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for sharren/vit-epsilon-5e-9

Finetuned
(525)
this model