aoi_clip_high_resolution_text_only_gpt_new_sampler
This model is a fine-tuned version of OFA-Sys/chinese-clip-vit-base-patch16 on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 3.2382
- Accuracy: 0.1291
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 50
- eval_batch_size: 20
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 200
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 100.0
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
2.5113 | 9.9839 | 3110 | 2.8518 | 0.1566 |
2.3003 | 19.9679 | 6220 | 3.0242 | 0.1476 |
2.2124 | 29.9518 | 9330 | 3.1246 | 0.1404 |
2.1682 | 39.9358 | 12440 | 3.1806 | 0.1371 |
2.1384 | 49.9197 | 15550 | 3.2024 | 0.1342 |
2.1246 | 59.9037 | 18660 | 3.2168 | 0.1323 |
2.1121 | 69.8876 | 21770 | 3.2209 | 0.1313 |
2.0987 | 79.8716 | 24880 | 3.2137 | 0.1307 |
2.0986 | 89.8555 | 27990 | 3.2374 | 0.1301 |
2.0962 | 99.8395 | 31100 | 3.2382 | 0.1295 |
Framework versions
- Transformers 4.42.3
- Pytorch 2.3.1+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1
- Downloads last month
- 6
Model tree for sharkMeow/aoi_clip_high_resolution_text_only_gpt_new_sampler
Base model
OFA-Sys/chinese-clip-vit-base-patch16