基于Llama2_13B的藏语词汇表扩充,继续预训练的Yak模型
一、CPT 阶段,本文采取两阶段方式
- 1.1 第一阶段,固定模型Transformer 部分的参数,仅训练Embedding,在尽量不干扰原模型的情况下适配新增的藏文词向量;
- 1.2 第二阶段:为模型添加LoRA+ 权重,训练Embedding 的同时也更新LoRA+ 参数。
两阶段的训练方式虽然效率较低,然而有效缓解了由于藏文数据与Llama 2 模型预训练时使用的数据分布存在差距而在CPT 过程中出现分布偏移的问题。
二、本文的训练流程主要包含
- 2.1 对Llama 2 进行藏文词表扩充,词表由32000 扩展至56724,提高模型在藏文的编解码效率。
- 2.2 在TibetanGeneralCorpus 上使用Sentencepiece 工具训练基于Unigram 策略的藏文分词器。生成的词表与原版Llama 2 的32K 词表进行合并,排除重复的词元后,得到扩充后词表规模为56724。用15G 的TibetanGeneralCorpus 和20G 的英、中混合文本进行CPT,采用自回归任务。
三、加载模型并启动服务
# -*- coding: UTF-8 -*-
#
"""
功能为:主要用于调用shajiu/Yak_Llama2_13B
@File: llama2-7b-server.py
@Software: PyCharm
"""
import json
import logging
logging.basicConfig(
level=logging.DEBUG, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
from flask import Flask
from flask import Response
from flask import request
from flask_cors import CORS
from transformers import AutoModelForCausalLM, AutoTokenizer
app = Flask(__name__)
CORS(app)
app.logger.setLevel(logging.INFO)
def load_model(model_name):
# 加载模型和分词器
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)
return tokenizer, model
def generate_response(model, tokenizer, text):
# 对输入的文本进行编码
inputs = tokenizer.encode(text, return_tensors='pt')
# 使用模型生成响应
output = model.generate(inputs, max_length=50, num_return_sequences=1)
# 对生成的输出进行解码,获取生成的文本
decoded_output = tokenizer.decode(output[0], skip_special_tokens=True)
return decoded_output
@app.route('/api/chat', methods=['POST'])
def qtpdnn_v0():
"""Description"""
inputs = request.get_json()
response = generate_response(model, tokenizer, inputs.get("query"))
print("输出",response)
output=inputs
output.update({"output":response})
return Response(json.dumps(output, ensure_ascii=False), mimetype='application/json')
if __name__ == "__main__":
# 模型名称
model_name = 'shajiu/Yak_Llama2_13B'
# 加载模型
tokenizer, model = load_model(model_name)
app.run(host='0.0.0.0', port=8718, debug=False, threaded=False, processes=1)
- Downloads last month
- 3
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.