Mixolar-4x7b

This model is a Mixure of Experts (MoE) made with mergekit (mixtral branch). It uses the following base models:

🧩 Configuration

base_model: kyujinpy/Sakura-SOLAR-Instruct
gate_mode: hidden
experts:
  - source_model: kyujinpy/Sakura-SOLAR-Instruct
    positive_prompts:
    - "chat"
    - "assistant"
    - "tell me"
    - "explain"
    negative_prompts:
    - "mathematics"
    - "reasoning"
  - source_model: jeonsworld/CarbonVillain-en-10.7B-v1
    positive_prompts:
    - "write"
    - "AI"
    - "text"
    - "paragraph"
    negative_prompts:
    - "mathematics"
    - "reasoning"
  - source_model: rishiraj/meow
    positive_prompts:
    - "chat"
    - "say"
    - "what"
    negative_prompts:
    - "mathematics"
    - "reasoning"
  - source_model: kyujinpy/Sakura-SOLRCA-Math-Instruct-DPO-v2
    positive_prompts:
    - "reason"
    - "math"
    - "mathematics"
    - "solve"
    - "count"
    negative_prompts:
    - "chat"
    - "assistant"
    - "storywriting"

💻 Usage

!pip install -qU transformers bitsandbytes accelerate

from transformers import AutoTokenizer
import transformers
import torch

model = "mlabonne/Mixolar-4x7b"

tokenizer = AutoTokenizer.from_pretrained(model)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    model_kwargs={"torch_dtype": torch.float16, "load_in_4bit": True},
)

messages = [{"role": "user", "content": "Explain what a Mixture of Experts is in less than 100 words."}]
prompt = pipeline.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])

Open LLM Leaderboard Evaluation Results

Detailed results can be found here

Metric Value
Avg. 74.18
AI2 Reasoning Challenge (25-Shot) 71.08
HellaSwag (10-Shot) 88.44
MMLU (5-Shot) 66.29
TruthfulQA (0-shot) 71.81
Winogrande (5-shot) 83.58
GSM8k (5-shot) 63.91
Downloads last month
3,656
Safetensors
Model size
36.1B params
Tensor type
FP16
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for shadowml/Mixolar-4x7b

Quantizations
2 models

Evaluation results