File size: 2,374 Bytes
ca3b3e9
f520490
fac1e4d
ca3b3e9
 
 
 
fac1e4d
ca3b3e9
d869fb6
ca3b3e9
d869fb6
ca3b3e9
d869fb6
 
 
ca3b3e9
d869fb6
ca3b3e9
d869fb6
ca3b3e9
 
 
d869fb6
ca3b3e9
d869fb6
 
ca3b3e9
 
d869fb6
ca3b3e9
 
 
 
d869fb6
 
 
ca3b3e9
d869fb6
 
 
ca3b3e9
d869fb6
 
 
ca3b3e9
d869fb6
ca3b3e9
 
 
 
 
d869fb6
 
 
ca3b3e9
 
 
d869fb6
ca3b3e9
d869fb6
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
---
license: apache-2.0
library_name: sentence-transformers
tags:
- sentence-transformers
- feature-extraction
- sentence-similarity
pipeline_tag: sentence-similarity
---

# sentence-transformers/msmarco-distilbert-base-dot-prod-v3

This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.



## Usage (Sentence-Transformers)

Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:

```
pip install -U sentence-transformers
```

Then you can use the model like this:

```python
from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]

model = SentenceTransformer('sentence-transformers/msmarco-distilbert-base-dot-prod-v3')
embeddings = model.encode(sentences)
print(embeddings)
```



## Evaluation Results



For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=sentence-transformers/msmarco-distilbert-base-dot-prod-v3)



## Full Model Architecture
```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: DistilBertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
  (2): Dense({'in_features': 768, 'out_features': 768, 'bias': False, 'activation_function': 'torch.nn.modules.linear.Identity'})
)
```

## Citing & Authors

This model was trained by [sentence-transformers](https://www.sbert.net/). 
        
If you find this model helpful, feel free to cite our publication [Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks](https://arxiv.org/abs/1908.10084):
```bibtex 
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "http://arxiv.org/abs/1908.10084",
}
```