nreimers
commited on
Commit
·
ca3b3e9
1
Parent(s):
d869fb6
Add new SentenceTransformer model.
Browse files- 1_Pooling/config.json +7 -0
- 2_Dense/config.json +1 -0
- 2_Dense/pytorch_model.bin +3 -0
- README.md +41 -67
- config.json +2 -2
- config_sentence_transformers.json +7 -0
- modules.json +20 -0
- pytorch_model.bin +2 -2
- tokenizer.json +0 -0
- tokenizer_config.json +1 -1
1_Pooling/config.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 768,
|
3 |
+
"pooling_mode_cls_token": false,
|
4 |
+
"pooling_mode_mean_tokens": true,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false
|
7 |
+
}
|
2_Dense/config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"in_features": 768, "out_features": 768, "bias": false, "activation_function": "torch.nn.modules.linear.Identity"}
|
2_Dense/pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e5365f1d15b18a7ae7d2e500bf404b6d3cf45397afe1a2086641ff56bc5d7d1a
|
3 |
+
size 2360171
|
README.md
CHANGED
@@ -1,95 +1,69 @@
|
|
1 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
|
|
3 |
|
4 |
-
This a
|
5 |
|
6 |
-
You can use this model for semantic search. Details can be found on: [SBERT.net - Semantic Search](https://www.sbert.net/examples/applications/semantic-search/README.html).
|
7 |
|
8 |
-
This model was optimized to be used with **dot-product** as similarity function between queries and documents.
|
9 |
|
|
|
10 |
|
11 |
-
|
12 |
-
|
13 |
-
Details about the training of the models can be found here: [SBERT.net - MS MARCO](https://www.sbert.net/examples/training/ms_marco/README.html)
|
14 |
-
|
15 |
-
## Performance
|
16 |
|
17 |
-
|
|
|
|
|
18 |
|
19 |
-
|
20 |
|
21 |
-
You can use the model directly from the model repository to compute sentence embeddings:
|
22 |
```python
|
23 |
-
from
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
#Mean Pooling - Take attention mask into account for correct averaging
|
28 |
-
def mean_pooling(model_output, attention_mask):
|
29 |
-
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
|
30 |
-
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
|
31 |
-
sum_embeddings = torch.sum(token_embeddings * input_mask_expanded, 1)
|
32 |
-
sum_mask = torch.clamp(input_mask_expanded.sum(1), min=1e-9)
|
33 |
-
return sum_embeddings / sum_mask
|
34 |
|
|
|
|
|
|
|
|
|
35 |
|
36 |
|
37 |
-
# Queries we want embeddings for
|
38 |
-
queries = ['What is the capital of France?', 'How many people live in New York City?']
|
39 |
|
40 |
-
|
41 |
-
passages = ['Paris is the capital of France', 'New York City is the most populous city in the United States, with an estimated 8,336,817 people living in the city, according to U.S. Census estimates dating July 1, 2019']
|
42 |
|
43 |
-
#Load AutoModel from huggingface model repository
|
44 |
-
tokenizer = AutoTokenizer.from_pretrained("model_name")
|
45 |
-
model = AutoModel.from_pretrained("model_name")
|
46 |
|
47 |
-
def compute_embeddings(sentences):
|
48 |
-
#Tokenize sentences
|
49 |
-
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
|
50 |
|
51 |
-
|
52 |
-
with torch.no_grad():
|
53 |
-
model_output = model(**encoded_input)
|
54 |
|
55 |
-
#Perform pooling. In this case, mean pooling
|
56 |
-
return mean_pooling(model_output, encoded_input['attention_mask'])
|
57 |
|
58 |
-
query_embeddings = compute_embeddings(queries)
|
59 |
-
passage_embeddings = compute_embeddings(passages)
|
60 |
-
```
|
61 |
|
62 |
-
##
|
63 |
-
Using this model becomes more convenient when you have [sentence-transformers](https://github.com/UKPLab/sentence-transformers) installed:
|
64 |
```
|
65 |
-
|
|
|
|
|
|
|
|
|
66 |
```
|
67 |
|
68 |
-
Then you can use the model like this:
|
69 |
-
```python
|
70 |
-
from sentence_transformers import SentenceTransformer
|
71 |
-
model = SentenceTransformer('model_name')
|
72 |
-
|
73 |
-
# Queries we want embeddings for
|
74 |
-
queries = ['What is the capital of France?', 'How many people live in New York City?']
|
75 |
-
|
76 |
-
# Passages that provide answers
|
77 |
-
passages = ['Paris is the capital of France', 'New York City is the most populous city in the United States, with an estimated 8,336,817 people living in the city, according to U.S. Census estimates dating July 1, 2019']
|
78 |
-
|
79 |
-
query_embeddings = model.encode(queries)
|
80 |
-
passage_embeddings = model.encode(passages)
|
81 |
-
```
|
82 |
-
|
83 |
-
## Changes in v3
|
84 |
-
The models from v2 have been used for find for all training queries similar passages. An [MS MARCO Cross-Encoder](ce-msmarco.md) based on the electra-base-model has been then used to classify if these retrieved passages answer the question.
|
85 |
-
|
86 |
-
If they received a low score by the cross-encoder, we saved them as hard negatives: They got a high score from the bi-encoder, but a low-score from the (better) cross-encoder.
|
87 |
-
|
88 |
-
We then trained the v2 models with these new hard negatives.
|
89 |
-
|
90 |
## Citing & Authors
|
|
|
|
|
|
|
91 |
If you find this model helpful, feel free to cite our publication [Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks](https://arxiv.org/abs/1908.10084):
|
92 |
-
```
|
93 |
@inproceedings{reimers-2019-sentence-bert,
|
94 |
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
95 |
author = "Reimers, Nils and Gurevych, Iryna",
|
|
|
1 |
+
---
|
2 |
+
pipeline_tag: sentence-similarity
|
3 |
+
tags:
|
4 |
+
- sentence-transformers
|
5 |
+
- feature-extraction
|
6 |
+
- sentence-similarity
|
7 |
+
- transformers
|
8 |
+
- transformers
|
9 |
+
- transformers
|
10 |
+
- transformers
|
11 |
+
- transformers
|
12 |
+
- transformers
|
13 |
+
- transformers
|
14 |
+
- transformers
|
15 |
+
---
|
16 |
|
17 |
+
# sentence-transformers/msmarco-distilbert-base-dot-prod-v3
|
18 |
|
19 |
+
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
|
20 |
|
|
|
21 |
|
|
|
22 |
|
23 |
+
## Usage (Sentence-Transformers)
|
24 |
|
25 |
+
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
|
|
|
|
|
|
|
|
|
26 |
|
27 |
+
```
|
28 |
+
pip install -U sentence-transformers
|
29 |
+
```
|
30 |
|
31 |
+
Then you can use the model like this:
|
32 |
|
|
|
33 |
```python
|
34 |
+
from sentence_transformers import SentenceTransformer
|
35 |
+
sentences = ["This is an example sentence", "Each sentence is converted"]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
|
37 |
+
model = SentenceTransformer('sentence-transformers/msmarco-distilbert-base-dot-prod-v3')
|
38 |
+
embeddings = model.encode(sentences)
|
39 |
+
print(embeddings)
|
40 |
+
```
|
41 |
|
42 |
|
|
|
|
|
43 |
|
44 |
+
## Evaluation Results
|
|
|
45 |
|
|
|
|
|
|
|
46 |
|
|
|
|
|
|
|
47 |
|
48 |
+
For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=sentence-transformers/msmarco-distilbert-base-dot-prod-v3)
|
|
|
|
|
49 |
|
|
|
|
|
50 |
|
|
|
|
|
|
|
51 |
|
52 |
+
## Full Model Architecture
|
|
|
53 |
```
|
54 |
+
SentenceTransformer(
|
55 |
+
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: DistilBertModel
|
56 |
+
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
|
57 |
+
(2): Dense({'in_features': 768, 'out_features': 768, 'bias': False, 'activation_function': 'torch.nn.modules.linear.Identity'})
|
58 |
+
)
|
59 |
```
|
60 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
## Citing & Authors
|
62 |
+
|
63 |
+
This model was trained by [sentence-transformers](https://www.sbert.net/).
|
64 |
+
|
65 |
If you find this model helpful, feel free to cite our publication [Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks](https://arxiv.org/abs/1908.10084):
|
66 |
+
```bibtex
|
67 |
@inproceedings{reimers-2019-sentence-bert,
|
68 |
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
69 |
author = "Reimers, Nils and Gurevych, Iryna",
|
config.json
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
{
|
2 |
-
"_name_or_path": "
|
3 |
"activation": "gelu",
|
4 |
"architectures": [
|
5 |
"DistilBertModel"
|
@@ -18,6 +18,6 @@
|
|
18 |
"seq_classif_dropout": 0.2,
|
19 |
"sinusoidal_pos_embds": false,
|
20 |
"tie_weights_": true,
|
21 |
-
"transformers_version": "4.
|
22 |
"vocab_size": 30522
|
23 |
}
|
|
|
1 |
{
|
2 |
+
"_name_or_path": "old_models/msmarco-distilbert-base-dot-prod-v3/0_Transformer",
|
3 |
"activation": "gelu",
|
4 |
"architectures": [
|
5 |
"DistilBertModel"
|
|
|
18 |
"seq_classif_dropout": 0.2,
|
19 |
"sinusoidal_pos_embds": false,
|
20 |
"tie_weights_": true,
|
21 |
+
"transformers_version": "4.7.0",
|
22 |
"vocab_size": 30522
|
23 |
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "2.0.0",
|
4 |
+
"transformers": "4.7.0",
|
5 |
+
"pytorch": "1.9.0+cu102"
|
6 |
+
}
|
7 |
+
}
|
modules.json
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
},
|
14 |
+
{
|
15 |
+
"idx": 2,
|
16 |
+
"name": "2",
|
17 |
+
"path": "2_Dense",
|
18 |
+
"type": "sentence_transformers.models.Dense"
|
19 |
+
}
|
20 |
+
]
|
pytorch_model.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e67d89134719a423d5978c8760b259f4e3106dc6b25c6bac4ccb50e7fbbeda38
|
3 |
+
size 265486777
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"do_lower_case": true, "unk_token": "[UNK]", "sep_token": "[SEP]", "pad_token": "[PAD]", "cls_token": "[CLS]", "mask_token": "[MASK]", "tokenize_chinese_chars": true, "strip_accents": null, "model_max_length": 512, "special_tokens_map_file": null, "name_or_path": "
|
|
|
1 |
+
{"do_lower_case": true, "unk_token": "[UNK]", "sep_token": "[SEP]", "pad_token": "[PAD]", "cls_token": "[CLS]", "mask_token": "[MASK]", "tokenize_chinese_chars": true, "strip_accents": null, "model_max_length": 512, "special_tokens_map_file": null, "name_or_path": "old_models/msmarco-distilbert-base-dot-prod-v3/0_Transformer", "do_basic_tokenize": true, "never_split": null}
|