apepkuss79's picture
Update README.md
1e755d9 verified
|
raw
history blame
3.74 kB
metadata
base_model: openchat/openchat-3.5-0106
inference: false
library_name: transformers
license: apache-2.0
model_creator: OpenChat
model_name: Openchat 3.5 0106
model_type: mistral
pipeline_tag: text-generation
quantized_by: Second State Inc.
tags:
  - openchat

OpenChat-3.5-0106-GGUF

Original Model

openchat/openchat-3.5-0106

Run with LlamaEdge

  • LlamaEdge version: v0.2.4

  • Prompt template

    • Prompt type: openchat

    • Prompt string

      GPT4 User: {prompt}<|end_of_turn|>GPT4 Assistant:
      
  • Run as LlamaEdge service

    wasmedge --dir .:. --nn-preload default:GGML:AUTO:openchat-3.5-0106-Q5_K_M.gguf llama-api-server.wasm -p openchat -r '<|end_of_turn|>'
    
  • Run as LlamaEdge command app

    wasmedge --dir .:. --nn-preload default:GGML:AUTO:openchat-3.5-0106-Q5_K_M.gguf llama-chat.wasm -p openchat -r '<|end_of_turn|>'
    

Quantized GGUF Models

Name Quant method Bits Size Max RAM required Use case
openchat-3.5-0106.Q2_K.gguf Q2_K 2 3.08 GB 5.58 GB smallest, significant quality loss - not recommended for most purposes
openchat-3.5-0106.Q3_K_L.gguf Q3_K_L 3 3.82 GB 6.32 GB small, substantial quality loss
openchat-3.5-0106.Q3_K_M.gguf Q3_K_M 3 3.52 GB 6.02 GB very small, high quality loss
openchat-3.5-0106.Q3_K_S.gguf Q3_K_S 3 3.16 GB 5.66 GB very small, high quality loss
openchat-3.5-0106.Q4_0.gguf Q4_0 4 4.11 GB 6.61 GB legacy; small, very high quality loss - prefer using Q3_K_M
openchat-3.5-0106.Q4_K_M.gguf Q4_K_M 4 4.37 GB 6.87 GB medium, balanced quality - recommended
openchat-3.5-0106.Q4_K_S.gguf Q4_K_S 4 4.14 GB 6.64 GB small, greater quality loss
openchat-3.5-0106.Q5_0.gguf Q5_0 5 5.00 GB 7.50 GB legacy; medium, balanced quality - prefer using Q4_K_M
openchat-3.5-0106.Q5_K_M.gguf Q5_K_M 5 5.13 GB 7.63 GB large, very low quality loss - recommended
openchat-3.5-0106.Q5_K_S.gguf Q5_K_S 5 5.00 GB 7.50 GB large, low quality loss - recommended

Note: the above RAM figures assume no GPU offloading. If layers are offloaded to the GPU, this will reduce RAM usage and use VRAM instead.