roberta-base-squad2-nq-bioasq

Model description

This model is a fine-tuned version of nlpconnect/roberta-base-squad2-nq on the BioASQ 10b dataset.

Intended uses & limitations

Cross-domain question answering!

Training and evaluation data

Training: BioASQ 10B with SQUAD sampled evenly to match the same samples as BioASQ 10B Eval: BioASQ 9B Eval with SQUAD Eval sampled evenly to match the same samples as BioASQ 9B Eval

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 3
  • mixed_precision_training: Native AMP

Training results

Went from untrained exact match: 60.9% (f1 71.8%) to exact match: 95.2% (96.6% f1) on BioASQ 9B held out training set. Scores on SQUAD+BioASQ remained stable at exact match: 72.5% (f1 81.4%) to 88.5% (f1 93.3%).

Framework versions

  • Transformers 4.18.0
  • Pytorch 1.11.0
  • Datasets 2.1.0
  • Tokenizers 0.12.1
Downloads last month
117
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.