Edit model card

Multilingual GPT model

We introduce a family of autoregressive GPT-like models with 1.3 billion parameters trained on 60 languages from 25 language families using Wikipedia and Colossal Clean Crawled Corpus.

We reproduce the GPT-3 architecture using GPT-2 sources and the sparse attention mechanism, Deepspeed and Megatron frameworks allows us to effectively parallelize the training and inference steps. The resulting models show performance on par with the recently released XGLM models at the same time covering more languages and enhancing NLP possibilities for low resource languages.


The source code for the mGPT XL model is available on Github


mGPT: Few-Shot Learners Go Multilingual

Abstract PDF

 doi = {10.48550/ARXIV.2204.07580},
 url = {https://arxiv.org/abs/2204.07580},
 author = {Shliazhko, Oleh and Fenogenova, Alena and Tikhonova, Maria and Mikhailov, Vladislav and Kozlova, Anastasia and Shavrina, Tatiana},
 keywords = {Computation and Language (cs.CL), Artificial Intelligence (cs.AI), FOS: Computer and information sciences, FOS: Computer and information sciences, I.2; I.2.7, 68-06, 68-04, 68T50, 68T01},
 title = {mGPT: Few-Shot Learners Go Multilingual},
 publisher = {arXiv},
 year = {2022},
 copyright = {Creative Commons Attribution 4.0 International}


Model supports 60 languages:

ISO codes: az, sw, af, ar, ba, be, bxr, bg, bn, cv, hy, da, de, el, es, eu, fa, fi, fr, he, hi, hu, kk, id, it, ja, ka, ky, ko, lt, lv, mn, ml, os, mr, ms, my, nl, ro, pl, pt, sah, ru, tg, sv, ta, te, tk, th, tr, tl, tt, tyv, uk, en, ur, vi, uz, yo, zh, xal


Afrikaans, Azerbaijani, Belarusian, Bengali, Chuvash, German, English, Basque, Finnish, Hebrew (modern), Hungarian, Indonesian, Japanese, Kazakh, Kirghiz, Kyrgyz, Latvian, Mongolian, Malay, Dutch, Polish, Romanian, Moldavan, Yakut, Swahili, Telugu, Thai, Turkish, Tuvinian, Urdu, Vietnamese, Yoruba, Arabic, Bashkir, Bulgarian, Buriat, Danish, Greek, Modern, Spanish; Castilian, Persian, French, Hindi, Armenian, Italian, Georgian, Korean, Lithuanian, Malayalam, Marathi, Burmese, Ossetian, Ossetic, Portuguese, Russian, Swedish, Tamil, Tajik, Turkmen, Tatar, Ukrainian, Uzbek, Kalmyk, Chinese

Training Data Statistics

  • Size: 488 Billion UTF characters
"General training corpus statistics"


The model was trained with sequence length 512 using Megatron and Deepspeed libs by SberDevices team on a dataset of 600 GB of texts in 60 languages. The model has seen 440 billion BPE tokens in total.

Total training time was around 12 days on 256 Nvidia V100 GPUs.

Downloads last month
Hosted inference API
Text Generation
This model can be loaded on the Inference API on-demand.

Datasets used to train sberbank-ai/mGPT

Spaces using sberbank-ai/mGPT 5