See axolotl config
axolotl version: 0.4.1
base_model: Equall/Saul-7B-Instruct-v1
model_type: MistralForCausalLM
tokenizer_type: LlamaTokenizer
trust_remote_code: true
hub_model_id: satpalsr/saul-lawma-lora
load_in_8bit: false
load_in_4bit: false
strict: false
chat_template: inst
datasets:
- path: satpalsr/lawma
type: chat_template
chat_template: inst
field_messages: messages
message_field_role: role
message_field_content: content
roles:
user:
- user
assistant:
- assistant
dataset_prepared_path: ./outputs/data-subset
val_set_size: 0.05
output_dir: ./outputs/lora-out
sequence_len: 4096
sample_packing: false
eval_sample_packing: false
pad_to_sequence_len: true
wandb_project: saul-lawma-lora
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:
adapter: lora
lora_model_dir:
lora_r: 32
lora_alpha: 16
lora_dropout: 0.05
lora_target_linear: true
lora_fan_in_fan_out:
gradient_accumulation_steps: 4
micro_batch_size: 8
num_epochs: 4
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.0002
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
s2_attention:
warmup_steps: 10
evals_per_epoch:
eval_table_size:
eval_max_new_tokens:
save_steps: 100
save_total_limit: 5
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
saul-lawma-lora
This model is a fine-tuned version of Equall/Saul-7B-Instruct-v1 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.4122
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 4
- total_train_batch_size: 256
- total_eval_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 4
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
0.2381 | 0.9995 | 976 | 0.3124 |
0.2025 | 2.0 | 1953 | 0.2846 |
0.1283 | 2.9995 | 2929 | 0.2919 |
0.0618 | 3.9980 | 3904 | 0.4122 |
Framework versions
- PEFT 0.13.0
- Transformers 4.45.1
- Pytorch 2.3.0+cu121
- Datasets 2.21.0
- Tokenizers 0.20.0
- Downloads last month
- 2
Model tree for satpalsr/saul-lawma-lora
Base model
Equall/Saul-7B-Instruct-v1