Edit model card

distilbert-base-uncased-lora-text-classification

This model is a fine-tuned version of distilbert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.0437
  • Accuracy: {'accuracy': 0.88}

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 250 0.7735 {'accuracy': 0.788}
0.4339 2.0 500 0.4542 {'accuracy': 0.875}
0.4339 3.0 750 0.5125 {'accuracy': 0.875}
0.2284 4.0 1000 0.7077 {'accuracy': 0.869}
0.2284 5.0 1250 0.7519 {'accuracy': 0.875}
0.0665 6.0 1500 0.8813 {'accuracy': 0.878}
0.0665 7.0 1750 0.9688 {'accuracy': 0.884}
0.0283 8.0 2000 1.0144 {'accuracy': 0.881}
0.0283 9.0 2250 1.0404 {'accuracy': 0.881}
0.0081 10.0 2500 1.0437 {'accuracy': 0.88}

Framework versions

  • PEFT 0.12.0
  • Transformers 4.42.4
  • Pytorch 2.3.1+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1
Downloads last month
2
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for sashiniliyanage/distilbert-base-uncased-lora-text-classification

Adapter
(191)
this model