File size: 4,775 Bytes
ea11c0a 21ed589 ea11c0a dc46d58 3c016f1 dc46d58 ea11c0a 21ed589 9b76f16 ea11c0a 21ed589 ea11c0a e3058ea ea11c0a e3058ea ea11c0a e3058ea ea11c0a e3058ea ea11c0a e3058ea ea11c0a e3058ea ea11c0a e3058ea ea11c0a e3058ea ea11c0a e3058ea ea11c0a e3058ea ea11c0a e3058ea ea11c0a e3058ea ea11c0a e3058ea ea11c0a e3058ea ea11c0a e3058ea ea11c0a e3058ea |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 |
---
language:
- multilingual
- af
- sq
- am
- ar
- hy
- as
- az
- eu
- be
- bn
- bs
- bg
- my
- ca
- ceb
- zh
- co
- hr
- cs
- da
- nl
- en
- eo
- et
- fi
- fr
- fy
- gl
- ka
- de
- el
- gu
- ht
- ha
- haw
- he
- hi
- hmn
- hu
- is
- ig
- id
- ga
- it
- ja
- jv
- kn
- kk
- km
- rw
- ko
- ku
- ky
- lo
- la
- lv
- lt
- lb
- mk
- mg
- ms
- ml
- mt
- mi
- mr
- mn
- ne
- 'no'
- ny
- or
- fa
- pl
- pt
- pa
- ro
- ru
- sm
- gd
- sr
- st
- sn
- si
- sk
- sl
- so
- es
- su
- sw
- sv
- tl
- tg
- ta
- tt
- te
- th
- bo
- tr
- tk
- ug
- uk
- ur
- uz
- vi
- cy
- wo
- gd
- sr
- st
- sn
- si
- sk
- sl
- so
- es
- su
- sw
- sv
- tl
- tg
- ta
- tt
- te
- th
- bo
- tr
- tk
- ug
- uk
- ur
- gd
- sr
- st
- sn
- si
- sk
- sl
- so
- es
- su
- sw
- sv
- tl
- tg
- ta
- tt
- te
- th
- bo
- tr
- tk
- ug
- uk
- ur
- uz
- vi
- cy
- wo
- gd
- sr
- st
- sn
- si
- sk
- sl
- so
- es
- su
- sw
- sv
- tl
- tg
- ta
- tt
- te
- th
- bo
- tr
- tk
- ug
- uk
- ur
- uz
- vi
- uz
- vi
- cy
- wo
- xh
- xh
- yi
- yo
- zu
pipeline_tag: sentence-similarity
tags:
- bert
- sentence_embedding
- multilingual
- sartify
- sentence-similarity
- sentence
license: apache-2.0
library_name: sentence-transformers
---
# AviLaBSE
## Model description
This is a unified model trained over LaBSE by google [LaBSE](https://tfhub.dev/google/LaBSE/2) to add other row resourced language dimensions and then convereted to PyTorch. It can be used to map more than 250 languages to a shared vector space. The pre-training process combines masked language modeling with translation language modeling. The model is useful for getting multilingual sentence embeddings and for bi-text retrieval.
- **Model**: [HuggingFace's model hub](https://huggingface.co/sartifyllc/AviLaBSE).
- **Paper**: [arXiv](https://arxiv.org/abs/2007.01852).
- **Original TF model**: [TensorFlow Hub](https://tfhub.dev/google/LaBSE/2).
- **Blog post**: [Google AI Blog](https://ai.googleblog.com/2020/08/language-agnostic-bert-sentence.html).
- **Developed by:** [Sartify LLC](https://huggingface.co/sartifyllc/)
## Usage
Using the model:
```python
import torch
from transformers import BertModel, BertTokenizerFast
tokenizer = BertTokenizerFast.from_pretrained("sartifyllc/AviLaBSE")
model = BertModel.from_pretrained("sartifyllc/AviLaBSE")
model = model.eval()
english_sentences = [
"dog",
"Puppies are nice.",
"I enjoy taking long walks along the beach with my dog.",
]
english_inputs = tokenizer(english_sentences, return_tensors="pt", padding=True)
with torch.no_grad():
english_outputs = model(**english_inputs)
```
To get the sentence embeddings, use the pooler output:
```python
english_embeddings = english_outputs.pooler_output
```
Output for other row resourced languages:
```python
swahili_sentences = [
"mbwa",
"Mbwa ni mzuri.",
"Ninafurahia kutembea kwa muda mrefu kando ya pwani na mbwa wangu.",
]
zulu_sentences = [
"inja",
"Inja iyavuma.",
"Ngithanda ukubhema izinyawo ezidlula emanzini nabanye nomfana wami.",
]
igbo_sentences = [
"nwa nkịta",
"Nwa nkịta dị ọma.",
"Achọrọ m gaa n'okirikiri na ụzọ nke oke na mgbidi na nwa nkịta m."
]
swahili_inputs = tokenizer(swahili_sentences, return_tensors="pt", padding=True)
zulu_inputs = tokenizer(zulu_sentences, return_tensors="pt", padding=True)
igbo_inputs=tokenizer(igbo_sentences, return_tensors="pt", padding=True)
with torch.no_grad():
swahili_outputs = model(**swahili_inputs)
zulu_outputs = model(**zulu_inputs)
igbo_outputs =model(**igbo_inputs)
swahili_embeddings = swahili_outputs.pooler_output
zulu_embeddings = zulu_outputs.pooler_output
igbo_embeddings=igbo_outputs.pooler_output
```
For similarity between sentences, an L2-norm is recommended before calculating the similarity:
```python
import torch.nn.functional as F
def similarity(embeddings_1, embeddings_2):
normalized_embeddings_1 = F.normalize(embeddings_1, p=2)
normalized_embeddings_2 = F.normalize(embeddings_2, p=2)
return torch.matmul(
normalized_embeddings_1, normalized_embeddings_2.transpose(0, 1)
)
print(similarity(english_embeddings, swahili_embeddings))
print(similarity(english_embeddings, zulu_embeddings))
print(similarity(swahili_embeddings, igbo_embeddings))
```
## Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
(2): Dense({'in_features': 768, 'out_features': 768, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'})
(3): Normalize()
)
``` |