Visualize in Weights & Biases Visualize in Weights & Biases

bert-fraud-classification-test

This model is a fine-tuned version of google-bert/bert-base-multilingual-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6431
  • F1: 0.7435
  • Precision: 0.6605
  • Val Accuracy: {'accuracy': 0.706}

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss F1 Precision Val Accuracy
0.601 0.32 40 0.6152 0.7039 0.6597 {'accuracy': 0.682}
0.6332 0.64 80 0.6143 0.7068 0.6515 {'accuracy': 0.679}
0.4862 0.96 120 0.5791 0.7151 0.7137 {'accuracy': 0.714}
0.6297 1.28 160 0.6323 0.7281 0.6495 {'accuracy': 0.69}
0.6164 1.6 200 0.5010 0.7522 0.8345 {'accuracy': 0.774}
0.6333 1.92 240 0.5824 0.7310 0.6828 {'accuracy': 0.71}
0.4465 2.24 280 0.5335 0.7579 0.7695 {'accuracy': 0.761}
0.5342 2.56 320 0.5065 0.7644 0.8040 {'accuracy': 0.775}
0.5462 2.88 360 0.6431 0.7435 0.6605 {'accuracy': 0.706}

Framework versions

  • Transformers 4.45.0.dev0
  • Pytorch 2.4.0+cu121
  • Datasets 3.0.0
  • Tokenizers 0.19.1
Downloads last month
3
Safetensors
Model size
167M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for sandeshrajx/test_trainer_20240918_1411

Finetuned
(1632)
this model