File size: 6,161 Bytes
129e187
917d14e
 
129e187
917d14e
 
 
 
 
 
 
129e187
917d14e
 
 
 
 
129e187
 
917d14e
129e187
917d14e
129e187
917d14e
 
 
129e187
917d14e
 
 
 
 
 
129e187
917d14e
129e187
917d14e
 
129e187
917d14e
 
 
129e187
917d14e
129e187
917d14e
 
129e187
917d14e
 
 
 
129e187
917d14e
 
 
 
 
 
 
 
 
 
129e187
917d14e
 
 
 
129e187
917d14e
129e187
917d14e
129e187
917d14e
129e187
917d14e
 
129e187
917d14e
129e187
917d14e
129e187
917d14e
129e187
917d14e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
129e187
917d14e
129e187
917d14e
129e187
 
917d14e
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
---
language:
- en
library_name: transformers
tags:
- gpt
- llm
- large language model
- h2o-llmstudio
inference: false
thumbnail: https://h2o.ai/etc.clientlibs/h2o/clientlibs/clientlib-site/resources/images/favicon.ico
---
# Model Card
## Summary

This model was trained using [H2O LLM Studio](https://github.com/h2oai/h2o-llmstudio).
- Base model: [h2oai/h2o-danube2-1.8b-base](https://huggingface.co/h2oai/h2o-danube2-1.8b-base)


## Usage

To use the model with the `transformers` library on a machine with GPUs, first make sure you have the `transformers` library installed.

```bash
pip install transformers==4.40.2
```

Also make sure you are providing your huggingface token if the model is lying in a private repo.
    - You can login to hugginface_hub by running
        ```python
        import huggingface_hub
        huggingface_hub.login(<ACCESS_TOKEN>)
        ```

You will also need to download the classification head, either manually, or by running the following code:

```python
from huggingface_hub import hf_hub_download

model_name = "samvelkoch/courageous-bear-1"  # either local folder or huggingface model name
hf_hub_download(repo_id=model_name, filename="classification_head.pth", local_dir="./")
```

You can make classification predictions by following the example below:

```python
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "samvelkoch/courageous-bear-1"  # either local folder or huggingface model name
# Important: The prompt needs to be in the same format the model was trained with.
# You can find an example prompt in the experiment logs.
prompt = "How are you?"

tokenizer = AutoTokenizer.from_pretrained(
    model_name,
    trust_remote_code=True,
)
model = AutoModelForCausalLM.from_pretrained(
    model_name,
    torch_dtype="auto",
    device_map={"": "cuda:0"},
    trust_remote_code=True,
).cuda().eval()

head_weights = torch.load("classification_head.pth", map_location="cuda")
# settings can be arbitrary here as we overwrite with saved weights
head = torch.nn.Linear(1, 1, bias=False).to("cuda")
head.weight.data = head_weights

inputs = tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to("cuda")

out = model(**inputs).logits

logits = head(out[:,-1])

print(logits)
```

## Quantization and sharding

You can load the models using quantization by specifying ```load_in_8bit=True``` or ```load_in_4bit=True```. Also, sharding on multiple GPUs is possible by setting ```device_map=auto```.

## Model Architecture

```
MistralForCausalLM(
  (model): MistralModel(
    (embed_tokens): Embedding(32000, 2560, padding_idx=0)
    (layers): ModuleList(
      (0-23): 24 x MistralDecoderLayer(
        (self_attn): MistralSdpaAttention(
          (q_proj): Linear(in_features=2560, out_features=2560, bias=False)
          (k_proj): Linear(in_features=2560, out_features=640, bias=False)
          (v_proj): Linear(in_features=2560, out_features=640, bias=False)
          (o_proj): Linear(in_features=2560, out_features=2560, bias=False)
          (rotary_emb): MistralRotaryEmbedding()
        )
        (mlp): MistralMLP(
          (gate_proj): Linear(in_features=2560, out_features=6912, bias=False)
          (up_proj): Linear(in_features=2560, out_features=6912, bias=False)
          (down_proj): Linear(in_features=6912, out_features=2560, bias=False)
          (act_fn): SiLU()
        )
        (input_layernorm): MistralRMSNorm()
        (post_attention_layernorm): MistralRMSNorm()
      )
    )
    (norm): MistralRMSNorm()
  )
  (lm_head): Linear(in_features=2560, out_features=32000, bias=False)
)
```

## Model Configuration

This model was trained using H2O LLM Studio and with the configuration in [cfg.yaml](cfg.yaml). Visit [H2O LLM Studio](https://github.com/h2oai/h2o-llmstudio) to learn how to train your own large language models.


## Disclaimer

Please read this disclaimer carefully before using the large language model provided in this repository. Your use of the model signifies your agreement to the following terms and conditions.

- Biases and Offensiveness: The large language model is trained on a diverse range of internet text data, which may contain biased, racist, offensive, or otherwise inappropriate content. By using this model, you acknowledge and accept that the generated content may sometimes exhibit biases or produce content that is offensive or inappropriate. The developers of this repository do not endorse, support, or promote any such content or viewpoints.
- Limitations: The large language model is an AI-based tool and not a human. It may produce incorrect, nonsensical, or irrelevant responses. It is the user's responsibility to critically evaluate the generated content and use it at their discretion.
- Use at Your Own Risk: Users of this large language model must assume full responsibility for any consequences that may arise from their use of the tool. The developers and contributors of this repository shall not be held liable for any damages, losses, or harm resulting from the use or misuse of the provided model.
- Ethical Considerations: Users are encouraged to use the large language model responsibly and ethically. By using this model, you agree not to use it for purposes that promote hate speech, discrimination, harassment, or any form of illegal or harmful activities.
- Reporting Issues: If you encounter any biased, offensive, or otherwise inappropriate content generated by the large language model, please report it to the repository maintainers through the provided channels. Your feedback will help improve the model and mitigate potential issues.
- Changes to this Disclaimer: The developers of this repository reserve the right to modify or update this disclaimer at any time without prior notice. It is the user's responsibility to periodically review the disclaimer to stay informed about any changes.

By using the large language model provided in this repository, you agree to accept and comply with the terms and conditions outlined in this disclaimer. If you do not agree with any part of this disclaimer, you should refrain from using the model and any content generated by it.