t5-base-Full-TweetSumm-1724683206

This model is a fine-tuned version of google-t5/t5-base on the Andyrasika/TweetSumm-tuned dataset. It achieves the following results on the evaluation set:

  • Loss: 1.8697
  • Rouge1: 0.4709
  • Rouge2: 0.2223
  • Rougel: 0.3999
  • Rougelsum: 0.4391
  • Gen Len: 41.8455
  • F1: 0.8952
  • Precision: 0.8934
  • Recall: 0.8971

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0005
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 3
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum Gen Len F1 Precision Recall
2.2928 1.0 220 1.8094 0.466 0.2146 0.3912 0.4301 41.9182 0.891 0.8891 0.8931
1.2939 2.0 440 1.7929 0.4605 0.2125 0.3897 0.4259 42.0 0.8928 0.8914 0.8944
0.7227 3.0 660 1.8697 0.4709 0.2223 0.3999 0.4391 41.8455 0.8952 0.8934 0.8971

Framework versions

  • Transformers 4.44.0
  • Pytorch 2.4.0
  • Datasets 2.21.0
  • Tokenizers 0.19.1
Downloads last month
5
Safetensors
Model size
223M params
Tensor type
F32
·
Inference API
Unable to determine this model's library. Check the docs .

Model tree for samuellimabraz/t5-base-full-finetune-tweetsumm

Base model

google-t5/t5-base
Finetuned
(430)
this model

Dataset used to train samuellimabraz/t5-base-full-finetune-tweetsumm

Evaluation results