dropoff-utcustom-train-SF-RGB-b0_1

This model is a fine-tuned version of nvidia/mit-b0 on the sam1120/dropoff-utcustom-TRAIN dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5626
  • Mean Iou: 0.4261
  • Mean Accuracy: 0.7046
  • Overall Accuracy: 0.9598
  • Accuracy Unlabeled: nan
  • Accuracy Dropoff: 0.4247
  • Accuracy Undropoff: 0.9846
  • Iou Unlabeled: 0.0
  • Iou Dropoff: 0.3192
  • Iou Undropoff: 0.9590

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 9e-06
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.05
  • num_epochs: 120

Training results

Training Loss Epoch Step Validation Loss Mean Iou Mean Accuracy Overall Accuracy Accuracy Unlabeled Accuracy Dropoff Accuracy Undropoff Iou Unlabeled Iou Dropoff Iou Undropoff
1.1029 3.33 10 1.0852 0.1637 0.3955 0.4522 nan 0.3333 0.4577 0.0 0.0410 0.4501
1.0856 6.67 20 1.0764 0.1911 0.5086 0.5025 nan 0.5153 0.5019 0.0 0.0761 0.4972
1.0755 10.0 30 1.0611 0.2252 0.6367 0.5749 nan 0.7045 0.5688 0.0 0.1104 0.5652
1.0285 13.33 40 1.0382 0.2622 0.7487 0.6568 nan 0.8494 0.6479 0.0 0.1420 0.6445
0.9935 16.67 50 1.0151 0.2893 0.7814 0.7201 nan 0.8486 0.7141 0.0 0.1580 0.7099
0.9927 20.0 60 0.9834 0.3160 0.7963 0.7816 nan 0.8124 0.7801 0.0 0.1735 0.7744
0.938 23.33 70 0.9585 0.3308 0.8084 0.8127 nan 0.8036 0.8131 0.0 0.1860 0.8065
0.9169 26.67 80 0.9376 0.3457 0.8169 0.8376 nan 0.7943 0.8396 0.0 0.2048 0.8324
0.8814 30.0 90 0.9003 0.3624 0.8086 0.8691 nan 0.7421 0.8750 0.0 0.2220 0.8651
0.8618 33.33 100 0.8894 0.3669 0.8184 0.8761 nan 0.7550 0.8817 0.0 0.2287 0.8720
0.8388 36.67 110 0.8618 0.3774 0.8096 0.8926 nan 0.7187 0.9006 0.0 0.2431 0.8892
0.8878 40.0 120 0.8269 0.3929 0.7937 0.9140 nan 0.6618 0.9257 0.0 0.2671 0.9116
0.8066 43.33 130 0.8074 0.4014 0.7955 0.9225 nan 0.6562 0.9348 0.0 0.2839 0.9202
0.8084 46.67 140 0.7919 0.4023 0.7932 0.9248 nan 0.6487 0.9376 0.0 0.2844 0.9226
0.7415 50.0 150 0.7707 0.4068 0.7850 0.9309 nan 0.6249 0.9451 0.0 0.2913 0.9290
0.7508 53.33 160 0.7326 0.4154 0.7660 0.9415 nan 0.5735 0.9585 0.0 0.3063 0.9400
0.7312 56.67 170 0.7126 0.4196 0.7636 0.9449 nan 0.5646 0.9625 0.0 0.3155 0.9435
0.6442 60.0 180 0.6869 0.4255 0.7500 0.9509 nan 0.5296 0.9704 0.0 0.3268 0.9497
0.6633 63.33 190 0.6765 0.4286 0.7524 0.9525 nan 0.5328 0.9719 0.0 0.3343 0.9513
0.7247 66.67 200 0.6557 0.4307 0.7335 0.9568 nan 0.4886 0.9785 0.0 0.3364 0.9558
0.6133 70.0 210 0.6369 0.4298 0.7279 0.9573 nan 0.4761 0.9796 0.0 0.3330 0.9564
0.6309 73.33 220 0.6309 0.4298 0.7437 0.9547 nan 0.5123 0.9752 0.0 0.3356 0.9536
0.6373 76.67 230 0.6094 0.4276 0.7197 0.9577 nan 0.4585 0.9808 0.0 0.3262 0.9568
0.8436 80.0 240 0.6195 0.4341 0.7438 0.9569 nan 0.5101 0.9776 0.0 0.3463 0.9559
0.6172 83.33 250 0.6207 0.4323 0.7384 0.9570 nan 0.4987 0.9782 0.0 0.3409 0.9560
0.6048 86.67 260 0.5949 0.4272 0.7136 0.9586 nan 0.4449 0.9824 0.0 0.3237 0.9578
0.7887 90.0 270 0.6007 0.4308 0.7282 0.9580 nan 0.4760 0.9803 0.0 0.3353 0.9571
0.605 93.33 280 0.5883 0.4284 0.7157 0.9589 nan 0.4489 0.9825 0.0 0.3271 0.9581
0.5964 96.67 290 0.5872 0.4277 0.7134 0.9590 nan 0.4439 0.9828 0.0 0.3251 0.9581
0.6097 100.0 300 0.5903 0.4300 0.7240 0.9582 nan 0.4669 0.9810 0.0 0.3325 0.9573
0.5886 103.33 310 0.5710 0.4250 0.7035 0.9594 nan 0.4227 0.9843 0.0 0.3162 0.9586
0.6079 106.67 320 0.5695 0.4277 0.7112 0.9594 nan 0.4390 0.9835 0.0 0.3245 0.9586
0.8054 110.0 330 0.5746 0.4308 0.7237 0.9588 nan 0.4657 0.9816 0.0 0.3344 0.9579
0.5496 113.33 340 0.5631 0.4285 0.7129 0.9595 nan 0.4424 0.9835 0.0 0.3269 0.9587
0.6271 116.67 350 0.5761 0.4302 0.7214 0.9589 nan 0.4608 0.9819 0.0 0.3326 0.9580
0.5511 120.0 360 0.5626 0.4261 0.7046 0.9598 nan 0.4247 0.9846 0.0 0.3192 0.9590

Framework versions

  • Transformers 4.30.2
  • Pytorch 2.0.1+cu117
  • Datasets 2.13.1
  • Tokenizers 0.13.3
Downloads last month
4
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.