ABSA-SentencePair-DAPT-HARDAR-bert-base-Camel-MSA-ru2

This model is a fine-tuned version of salohnana2018/CAMEL-BERT-MSA-domianAdaption-Single-ABSA-HARD on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1140
  • Accuracy: 0.8956
  • F1: 0.8956
  • Precision: 0.8956
  • Recall: 0.8956

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
0.0556 1.0 265 0.0421 0.8842 0.8842 0.8842 0.8842
0.0372 2.0 530 0.0368 0.8828 0.8828 0.8828 0.8828
0.0231 3.0 795 0.0426 0.8828 0.8828 0.8828 0.8828
0.0145 4.0 1060 0.0601 0.8809 0.8809 0.8809 0.8809
0.0101 5.0 1325 0.0573 0.8842 0.8842 0.8842 0.8842
0.0076 6.0 1590 0.0621 0.8856 0.8856 0.8856 0.8856
0.0051 7.0 1855 0.0621 0.8866 0.8866 0.8866 0.8866
0.0044 8.0 2120 0.0709 0.8899 0.8899 0.8899 0.8899
0.0035 9.0 2385 0.0827 0.8899 0.8899 0.8899 0.8899
0.0028 10.0 2650 0.0895 0.8946 0.8946 0.8946 0.8946
0.0024 11.0 2915 0.0859 0.8908 0.8908 0.8908 0.8908
0.0021 12.0 3180 0.0897 0.8847 0.8847 0.8847 0.8847
0.0017 13.0 3445 0.0994 0.8989 0.8989 0.8989 0.8989
0.0014 14.0 3710 0.1056 0.8937 0.8937 0.8937 0.8937
0.0014 15.0 3975 0.1044 0.8941 0.8941 0.8941 0.8941
0.0012 16.0 4240 0.1105 0.8951 0.8951 0.8951 0.8951
0.0012 17.0 4505 0.1119 0.8956 0.8956 0.8956 0.8956
0.0011 18.0 4770 0.1088 0.8965 0.8965 0.8965 0.8965
0.001 19.0 5035 0.1132 0.8979 0.8979 0.8979 0.8979
0.001 20.0 5300 0.1140 0.8956 0.8956 0.8956 0.8956

Framework versions

  • Transformers 4.38.1
  • Pytorch 2.1.0+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2
Downloads last month
12
Safetensors
Model size
109M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for salohnana2018/ABSA-SentencePair-DAPT-HARDAR-bert-base-Camel-MSA-ru2