Edit model card

ABSA-SentencePair-DAPT-HARDAR-bert-base-Camel-MSA-ru1

This model is a fine-tuned version of salohnana2018/CAMEL-BERT-MSA-domianAdaption-Single-ABSA-HARD on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1067
  • Accuracy: 0.8993
  • F1: 0.8993
  • Precision: 0.8993
  • Recall: 0.8993

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 25
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
0.0591 1.0 265 0.0553 0.7925 0.7925 0.7925 0.7925
0.0352 2.0 530 0.0372 0.8932 0.8932 0.8932 0.8932
0.0229 3.0 795 0.0469 0.8866 0.8866 0.8866 0.8866
0.0146 4.0 1060 0.0533 0.8960 0.8960 0.8960 0.8960
0.0101 5.0 1325 0.0581 0.8970 0.8970 0.8970 0.8970
0.0074 6.0 1590 0.0631 0.8828 0.8828 0.8828 0.8828
0.0053 7.0 1855 0.0658 0.8823 0.8823 0.8823 0.8823
0.0051 8.0 2120 0.0723 0.8974 0.8974 0.8974 0.8974
0.0038 9.0 2385 0.0794 0.8913 0.8913 0.8913 0.8913
0.0028 10.0 2650 0.0755 0.8871 0.8871 0.8871 0.8871
0.0026 11.0 2915 0.0811 0.8894 0.8894 0.8894 0.8894
0.0019 12.0 3180 0.0853 0.8951 0.8951 0.8951 0.8951
0.0022 13.0 3445 0.0924 0.8861 0.8861 0.8861 0.8861
0.0018 14.0 3710 0.0898 0.8946 0.8946 0.8946 0.8946
0.0012 15.0 3975 0.0916 0.8856 0.8856 0.8856 0.8856
0.0013 16.0 4240 0.0999 0.8956 0.8956 0.8956 0.8956
0.0013 17.0 4505 0.1019 0.8922 0.8922 0.8922 0.8922
0.001 18.0 4770 0.1025 0.8979 0.8979 0.8979 0.8979
0.001 19.0 5035 0.1061 0.8998 0.8998 0.8998 0.8998
0.001 20.0 5300 0.1067 0.8993 0.8993 0.8993 0.8993

Framework versions

  • Transformers 4.38.1
  • Pytorch 2.1.0+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2
Downloads last month
12
Safetensors
Model size
109M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for salohnana2018/ABSA-SentencePair-DAPT-HARDAR-bert-base-Camel-MSA-ru1