arabert_cross_relevance_task1_fold1
This model is a fine-tuned version of aubmindlab/bert-base-arabertv02 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.2738
- Qwk: 0.0
- Mse: 0.2739
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Qwk | Mse |
---|---|---|---|---|---|
No log | 0.125 | 2 | 1.0588 | -0.0001 | 1.0575 |
No log | 0.25 | 4 | 0.3264 | 0.1085 | 0.3266 |
No log | 0.375 | 6 | 0.4800 | 0.0711 | 0.4804 |
No log | 0.5 | 8 | 0.3741 | 0.0242 | 0.3744 |
No log | 0.625 | 10 | 0.2864 | 0.0 | 0.2865 |
No log | 0.75 | 12 | 0.2902 | 0.0 | 0.2903 |
No log | 0.875 | 14 | 0.3836 | -0.0180 | 0.3840 |
No log | 1.0 | 16 | 0.5708 | 0.0324 | 0.5714 |
No log | 1.125 | 18 | 0.6465 | 0.0638 | 0.6472 |
No log | 1.25 | 20 | 0.4891 | -0.0969 | 0.4897 |
No log | 1.375 | 22 | 0.3947 | 0.0283 | 0.3952 |
No log | 1.5 | 24 | 0.3523 | 0.0122 | 0.3527 |
No log | 1.625 | 26 | 0.3225 | 0.0 | 0.3228 |
No log | 1.75 | 28 | 0.3334 | 0.0 | 0.3337 |
No log | 1.875 | 30 | 0.3339 | 0.0 | 0.3343 |
No log | 2.0 | 32 | 0.3405 | 0.0122 | 0.3408 |
No log | 2.125 | 34 | 0.3476 | 0.0122 | 0.3480 |
No log | 2.25 | 36 | 0.3276 | 0.0122 | 0.3280 |
No log | 2.375 | 38 | 0.3178 | 0.0 | 0.3181 |
No log | 2.5 | 40 | 0.3023 | 0.0 | 0.3026 |
No log | 2.625 | 42 | 0.2905 | 0.0 | 0.2907 |
No log | 2.75 | 44 | 0.2841 | 0.0 | 0.2843 |
No log | 2.875 | 46 | 0.2902 | 0.0 | 0.2904 |
No log | 3.0 | 48 | 0.3167 | 0.0122 | 0.3170 |
No log | 3.125 | 50 | 0.3680 | 0.0285 | 0.3684 |
No log | 3.25 | 52 | 0.3771 | 0.0452 | 0.3775 |
No log | 3.375 | 54 | 0.3850 | 0.0665 | 0.3854 |
No log | 3.5 | 56 | 0.3485 | 0.0080 | 0.3489 |
No log | 3.625 | 58 | 0.3149 | 0.0 | 0.3151 |
No log | 3.75 | 60 | 0.2939 | 0.0 | 0.2941 |
No log | 3.875 | 62 | 0.2881 | 0.0 | 0.2883 |
No log | 4.0 | 64 | 0.2895 | 0.0 | 0.2897 |
No log | 4.125 | 66 | 0.3127 | 0.0 | 0.3129 |
No log | 4.25 | 68 | 0.3458 | 0.0245 | 0.3462 |
No log | 4.375 | 70 | 0.3576 | 0.0161 | 0.3580 |
No log | 4.5 | 72 | 0.3521 | 0.0161 | 0.3525 |
No log | 4.625 | 74 | 0.3633 | 0.0161 | 0.3637 |
No log | 4.75 | 76 | 0.3571 | 0.0326 | 0.3575 |
No log | 4.875 | 78 | 0.3220 | 0.0 | 0.3223 |
No log | 5.0 | 80 | 0.2971 | 0.0 | 0.2973 |
No log | 5.125 | 82 | 0.2905 | 0.0 | 0.2906 |
No log | 5.25 | 84 | 0.2904 | 0.0 | 0.2906 |
No log | 5.375 | 86 | 0.2948 | 0.0 | 0.2950 |
No log | 5.5 | 88 | 0.3083 | 0.0 | 0.3085 |
No log | 5.625 | 90 | 0.3120 | 0.0 | 0.3123 |
No log | 5.75 | 92 | 0.2947 | 0.0 | 0.2949 |
No log | 5.875 | 94 | 0.2786 | 0.0 | 0.2786 |
No log | 6.0 | 96 | 0.2717 | 0.0 | 0.2717 |
No log | 6.125 | 98 | 0.2685 | 0.0 | 0.2684 |
No log | 6.25 | 100 | 0.2677 | 0.0 | 0.2677 |
No log | 6.375 | 102 | 0.2687 | 0.0 | 0.2688 |
No log | 6.5 | 104 | 0.2689 | 0.0 | 0.2690 |
No log | 6.625 | 106 | 0.2694 | 0.0 | 0.2695 |
No log | 6.75 | 108 | 0.2703 | 0.0 | 0.2703 |
No log | 6.875 | 110 | 0.2742 | 0.0 | 0.2743 |
No log | 7.0 | 112 | 0.2832 | 0.0 | 0.2833 |
No log | 7.125 | 114 | 0.2950 | 0.0 | 0.2953 |
No log | 7.25 | 116 | 0.2962 | 0.0 | 0.2965 |
No log | 7.375 | 118 | 0.2908 | 0.0 | 0.2910 |
No log | 7.5 | 120 | 0.2842 | 0.0 | 0.2844 |
No log | 7.625 | 122 | 0.2800 | 0.0 | 0.2802 |
No log | 7.75 | 124 | 0.2757 | 0.0 | 0.2758 |
No log | 7.875 | 126 | 0.2725 | 0.0 | 0.2726 |
No log | 8.0 | 128 | 0.2720 | 0.0 | 0.2720 |
No log | 8.125 | 130 | 0.2730 | 0.0 | 0.2730 |
No log | 8.25 | 132 | 0.2749 | 0.0 | 0.2750 |
No log | 8.375 | 134 | 0.2761 | 0.0 | 0.2763 |
No log | 8.5 | 136 | 0.2761 | 0.0 | 0.2762 |
No log | 8.625 | 138 | 0.2753 | 0.0 | 0.2755 |
No log | 8.75 | 140 | 0.2739 | 0.0 | 0.2740 |
No log | 8.875 | 142 | 0.2738 | 0.0 | 0.2739 |
No log | 9.0 | 144 | 0.2744 | 0.0 | 0.2745 |
No log | 9.125 | 146 | 0.2747 | 0.0 | 0.2748 |
No log | 9.25 | 148 | 0.2751 | 0.0 | 0.2752 |
No log | 9.375 | 150 | 0.2750 | 0.0 | 0.2751 |
No log | 9.5 | 152 | 0.2745 | 0.0 | 0.2747 |
No log | 9.625 | 154 | 0.2742 | 0.0 | 0.2743 |
No log | 9.75 | 156 | 0.2740 | 0.0 | 0.2741 |
No log | 9.875 | 158 | 0.2739 | 0.0 | 0.2740 |
No log | 10.0 | 160 | 0.2738 | 0.0 | 0.2739 |
Framework versions
- Transformers 4.44.0
- Pytorch 2.4.0
- Datasets 2.21.0
- Tokenizers 0.19.1
- Downloads last month
- 0
Model tree for salbatarni/arabert_cross_relevance_task1_fold1
Base model
aubmindlab/bert-base-arabertv02