Edit model card

twitter-roberta-base-sentiment-latest-trump-stance-3

This model is a fine-tuned version of cardiffnlp/twitter-roberta-base-sentiment-latest on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2191
  • Accuracy: {'accuracy': 0.92375}

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 5
  • eval_batch_size: 5
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.4724 1.0 2560 0.3901 {'accuracy': 0.833125}
0.4851 2.0 5120 0.3255 {'accuracy': 0.8765625}
0.4811 3.0 7680 0.3562 {'accuracy': 0.868125}
0.4828 4.0 10240 0.6211 {'accuracy': 0.8375}
0.4136 5.0 12800 0.4535 {'accuracy': 0.8496875}
0.4509 6.0 15360 0.2934 {'accuracy': 0.8915625}
0.4426 7.0 17920 0.3903 {'accuracy': 0.8775}
0.4393 8.0 20480 0.2773 {'accuracy': 0.890625}
0.4314 9.0 23040 0.2834 {'accuracy': 0.895625}
0.4222 10.0 25600 0.3127 {'accuracy': 0.893125}
0.396 11.0 28160 0.2732 {'accuracy': 0.8984375}
0.4185 12.0 30720 0.2628 {'accuracy': 0.9034375}
0.4068 13.0 33280 0.2689 {'accuracy': 0.9053125}
0.432 14.0 35840 0.3075 {'accuracy': 0.88375}
0.4292 15.0 38400 0.3339 {'accuracy': 0.8878125}
0.4468 16.0 40960 0.2573 {'accuracy': 0.8971875}
0.438 17.0 43520 0.2787 {'accuracy': 0.9028125}
0.4164 18.0 46080 0.2621 {'accuracy': 0.905625}
0.3823 19.0 48640 0.2272 {'accuracy': 0.9146875}
0.3487 20.0 51200 0.2917 {'accuracy': 0.8996875}
0.4165 21.0 53760 0.2238 {'accuracy': 0.9184375}
0.3776 22.0 56320 0.2620 {'accuracy': 0.908125}
0.4304 23.0 58880 0.2383 {'accuracy': 0.908125}
0.4152 24.0 61440 0.3826 {'accuracy': 0.8746875}
0.4024 25.0 64000 0.2482 {'accuracy': 0.9121875}
0.3547 26.0 66560 0.4049 {'accuracy': 0.8778125}
0.3632 27.0 69120 0.2304 {'accuracy': 0.916875}
0.3732 28.0 71680 0.4476 {'accuracy': 0.8721875}
0.3438 29.0 74240 0.2521 {'accuracy': 0.9090625}
0.3871 30.0 76800 0.3117 {'accuracy': 0.894375}
0.3654 31.0 79360 0.2647 {'accuracy': 0.908125}
0.3838 32.0 81920 0.2181 {'accuracy': 0.9184375}
0.3657 33.0 84480 0.2106 {'accuracy': 0.9228125}
0.357 34.0 87040 0.2231 {'accuracy': 0.923125}
0.3807 35.0 89600 0.2420 {'accuracy': 0.9121875}
0.3374 36.0 92160 0.2927 {'accuracy': 0.895625}
0.304 37.0 94720 0.2226 {'accuracy': 0.9203125}
0.3322 38.0 97280 0.2471 {'accuracy': 0.9140625}
0.3522 39.0 99840 0.2443 {'accuracy': 0.9134375}
0.3124 40.0 102400 0.2410 {'accuracy': 0.91625}
0.3095 41.0 104960 0.2237 {'accuracy': 0.91875}
0.3142 42.0 107520 0.2396 {'accuracy': 0.918125}
0.3203 43.0 110080 0.2191 {'accuracy': 0.916875}
0.2913 44.0 112640 0.2298 {'accuracy': 0.9221875}
0.3308 45.0 115200 0.2188 {'accuracy': 0.924375}
0.2614 46.0 117760 0.2437 {'accuracy': 0.914375}
0.2903 47.0 120320 0.2507 {'accuracy': 0.911875}
0.3421 48.0 122880 0.2119 {'accuracy': 0.9246875}
0.3158 49.0 125440 0.2117 {'accuracy': 0.9240625}
0.326 50.0 128000 0.2191 {'accuracy': 0.92375}

Framework versions

  • PEFT 0.10.0
  • Transformers 4.38.2
  • Pytorch 2.2.1
  • Datasets 2.18.0
  • Tokenizers 0.15.2
Downloads last month
1
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for saideep-arikontham/twitter-roberta-base-sentiment-latest-trump-stance-3

Adapter
(9)
this model