twitter-roberta-base-sentiment-latest-trump-stance-3
This model is a fine-tuned version of cardiffnlp/twitter-roberta-base-sentiment-latest on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.2191
- Accuracy: {'accuracy': 0.92375}
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 5
- eval_batch_size: 5
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.4724 | 1.0 | 2560 | 0.3901 | {'accuracy': 0.833125} |
0.4851 | 2.0 | 5120 | 0.3255 | {'accuracy': 0.8765625} |
0.4811 | 3.0 | 7680 | 0.3562 | {'accuracy': 0.868125} |
0.4828 | 4.0 | 10240 | 0.6211 | {'accuracy': 0.8375} |
0.4136 | 5.0 | 12800 | 0.4535 | {'accuracy': 0.8496875} |
0.4509 | 6.0 | 15360 | 0.2934 | {'accuracy': 0.8915625} |
0.4426 | 7.0 | 17920 | 0.3903 | {'accuracy': 0.8775} |
0.4393 | 8.0 | 20480 | 0.2773 | {'accuracy': 0.890625} |
0.4314 | 9.0 | 23040 | 0.2834 | {'accuracy': 0.895625} |
0.4222 | 10.0 | 25600 | 0.3127 | {'accuracy': 0.893125} |
0.396 | 11.0 | 28160 | 0.2732 | {'accuracy': 0.8984375} |
0.4185 | 12.0 | 30720 | 0.2628 | {'accuracy': 0.9034375} |
0.4068 | 13.0 | 33280 | 0.2689 | {'accuracy': 0.9053125} |
0.432 | 14.0 | 35840 | 0.3075 | {'accuracy': 0.88375} |
0.4292 | 15.0 | 38400 | 0.3339 | {'accuracy': 0.8878125} |
0.4468 | 16.0 | 40960 | 0.2573 | {'accuracy': 0.8971875} |
0.438 | 17.0 | 43520 | 0.2787 | {'accuracy': 0.9028125} |
0.4164 | 18.0 | 46080 | 0.2621 | {'accuracy': 0.905625} |
0.3823 | 19.0 | 48640 | 0.2272 | {'accuracy': 0.9146875} |
0.3487 | 20.0 | 51200 | 0.2917 | {'accuracy': 0.8996875} |
0.4165 | 21.0 | 53760 | 0.2238 | {'accuracy': 0.9184375} |
0.3776 | 22.0 | 56320 | 0.2620 | {'accuracy': 0.908125} |
0.4304 | 23.0 | 58880 | 0.2383 | {'accuracy': 0.908125} |
0.4152 | 24.0 | 61440 | 0.3826 | {'accuracy': 0.8746875} |
0.4024 | 25.0 | 64000 | 0.2482 | {'accuracy': 0.9121875} |
0.3547 | 26.0 | 66560 | 0.4049 | {'accuracy': 0.8778125} |
0.3632 | 27.0 | 69120 | 0.2304 | {'accuracy': 0.916875} |
0.3732 | 28.0 | 71680 | 0.4476 | {'accuracy': 0.8721875} |
0.3438 | 29.0 | 74240 | 0.2521 | {'accuracy': 0.9090625} |
0.3871 | 30.0 | 76800 | 0.3117 | {'accuracy': 0.894375} |
0.3654 | 31.0 | 79360 | 0.2647 | {'accuracy': 0.908125} |
0.3838 | 32.0 | 81920 | 0.2181 | {'accuracy': 0.9184375} |
0.3657 | 33.0 | 84480 | 0.2106 | {'accuracy': 0.9228125} |
0.357 | 34.0 | 87040 | 0.2231 | {'accuracy': 0.923125} |
0.3807 | 35.0 | 89600 | 0.2420 | {'accuracy': 0.9121875} |
0.3374 | 36.0 | 92160 | 0.2927 | {'accuracy': 0.895625} |
0.304 | 37.0 | 94720 | 0.2226 | {'accuracy': 0.9203125} |
0.3322 | 38.0 | 97280 | 0.2471 | {'accuracy': 0.9140625} |
0.3522 | 39.0 | 99840 | 0.2443 | {'accuracy': 0.9134375} |
0.3124 | 40.0 | 102400 | 0.2410 | {'accuracy': 0.91625} |
0.3095 | 41.0 | 104960 | 0.2237 | {'accuracy': 0.91875} |
0.3142 | 42.0 | 107520 | 0.2396 | {'accuracy': 0.918125} |
0.3203 | 43.0 | 110080 | 0.2191 | {'accuracy': 0.916875} |
0.2913 | 44.0 | 112640 | 0.2298 | {'accuracy': 0.9221875} |
0.3308 | 45.0 | 115200 | 0.2188 | {'accuracy': 0.924375} |
0.2614 | 46.0 | 117760 | 0.2437 | {'accuracy': 0.914375} |
0.2903 | 47.0 | 120320 | 0.2507 | {'accuracy': 0.911875} |
0.3421 | 48.0 | 122880 | 0.2119 | {'accuracy': 0.9246875} |
0.3158 | 49.0 | 125440 | 0.2117 | {'accuracy': 0.9240625} |
0.326 | 50.0 | 128000 | 0.2191 | {'accuracy': 0.92375} |
Framework versions
- PEFT 0.10.0
- Transformers 4.38.2
- Pytorch 2.2.1
- Datasets 2.18.0
- Tokenizers 0.15.2
- Downloads last month
- 1