SentenceTransformer based on BAAI/bge-base-en-v1.5
This is a sentence-transformers model finetuned from BAAI/bge-base-en-v1.5. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: BAAI/bge-base-en-v1.5
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("sachin19566/bge-base-en-v1.5-udemy-fte")
# Run inference
sentences = [
'Multiply your returns using \'Value Investing",https://www.udemy.com/multiply-your-returns-using-value-investing/,true,20,1942,19,63,All Levels,4.5 hours,2015-07-23T00:08:33Z\n874284,Weekly Forex Analysis by Baraq FX"',
'All Levels',
'Business Finance',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Training Details
Training Dataset
Unnamed Dataset
- Size: 3,683 training samples
- Columns:
course_title
,level
, andsubject
- Approximate statistics based on the first 1000 samples:
course_title level subject type string string string details - min: 4 tokens
- mean: 11.02 tokens
- max: 81 tokens
- min: 4 tokens
- mean: 4.27 tokens
- max: 5 tokens
- min: 4 tokens
- mean: 4.0 tokens
- max: 4 tokens
- Samples:
course_title level subject Ultimate Investment Banking Course
All Levels
Business Finance
Complete GST Course & Certification - Grow Your CA Practice
All Levels
Business Finance
Financial Modeling for Business Analysts and Consultants
Intermediate Level
Business Finance
- Loss:
MultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Evaluation Dataset
Unnamed Dataset
- Size: 100 evaluation samples
- Columns:
course_title
,level
, andsubject
- Approximate statistics based on the first 100 samples:
course_title level subject type string string string details - min: 4 tokens
- mean: 12.63 tokens
- max: 81 tokens
- min: 4 tokens
- mean: 4.42 tokens
- max: 5 tokens
- min: 4 tokens
- mean: 4.0 tokens
- max: 4 tokens
- Samples:
course_title level subject Learn to Use jQuery UI Widgets
Beginner Level
Web Development
Financial Statements: Learn Accounting. Unlock the Numbers.
Beginner Level
Business Finance
Trade Recap I - A Real Look at Futures Options Markets
Beginner Level
Business Finance
- Loss:
MultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 16per_device_eval_batch_size
: 16learning_rate
: 3e-06max_steps
: 932warmup_ratio
: 0.1fp16
: Truebatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 16per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 3e-06weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 3.0max_steps
: 932lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseeval_use_gather_object
: Falsebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | loss |
---|---|---|---|
0.0866 | 20 | 2.2161 | 1.7831 |
0.1732 | 40 | 1.9601 | 1.5400 |
0.2597 | 60 | 1.6253 | 1.1987 |
0.3463 | 80 | 1.2393 | 1.0009 |
0.4329 | 100 | 1.1817 | 0.9073 |
0.5195 | 120 | 1.0667 | 0.8817 |
0.6061 | 140 | 1.258 | 0.8282 |
0.6926 | 160 | 1.2375 | 0.7618 |
0.7792 | 180 | 1.0925 | 0.7274 |
0.8658 | 200 | 1.0823 | 0.7101 |
0.9524 | 220 | 0.8789 | 0.7056 |
1.0390 | 240 | 0.9597 | 0.7107 |
1.1255 | 260 | 0.8427 | 0.7221 |
1.2121 | 280 | 0.8612 | 0.7287 |
1.2987 | 300 | 0.8428 | 0.7275 |
1.3853 | 320 | 0.6426 | 0.7451 |
1.4719 | 340 | 0.709 | 0.7642 |
1.5584 | 360 | 0.6602 | 0.7851 |
1.6450 | 380 | 0.7356 | 0.8244 |
1.7316 | 400 | 0.7633 | 0.8310 |
1.8182 | 420 | 0.9592 | 0.8185 |
1.9048 | 440 | 0.6715 | 0.8094 |
1.9913 | 460 | 0.7926 | 0.8103 |
2.0779 | 480 | 0.7703 | 0.8011 |
2.1645 | 500 | 0.6287 | 0.8266 |
2.2511 | 520 | 0.5481 | 0.8536 |
2.3377 | 540 | 0.7101 | 0.8679 |
2.4242 | 560 | 0.423 | 0.9025 |
2.5108 | 580 | 0.6814 | 0.9197 |
2.5974 | 600 | 0.5879 | 0.9492 |
2.6840 | 620 | 0.537 | 0.9861 |
2.7706 | 640 | 0.5107 | 1.0179 |
2.8571 | 660 | 0.6164 | 1.0413 |
2.9437 | 680 | 0.6582 | 1.0710 |
3.0303 | 700 | 0.4553 | 1.1001 |
3.1169 | 720 | 0.3649 | 1.1416 |
3.2035 | 740 | 0.9273 | 1.1142 |
3.2900 | 760 | 0.8816 | 1.0694 |
3.3766 | 780 | 0.7005 | 1.0481 |
3.4632 | 800 | 1.9002 | 1.0289 |
3.5498 | 820 | 1.4467 | 1.0141 |
3.6364 | 840 | 1.5564 | 1.0023 |
3.7229 | 860 | 1.2316 | 0.9961 |
3.8095 | 880 | 1.0549 | 0.9931 |
3.8961 | 900 | 1.2359 | 0.9913 |
3.9827 | 920 | 1.3568 | 0.9897 |
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.1.0
- Transformers: 4.44.2
- PyTorch: 2.4.0+cu121
- Accelerate: 0.33.0
- Datasets: 3.0.0
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 6
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for sachin19566/bge-base-en-v1.5-udemy-fte
Base model
BAAI/bge-base-en-v1.5