Italian-Bert (Italian Bert) + POS ππ·
This model is a fine-tuned on xtreme udpos Italian version of Bert Base Italian for POS downstream task.
Details of the downstream task (POS) - Dataset
Dataset | # Examples |
---|---|
Train | 716 K |
Dev | 85 K |
Labels covered:
ADJ
ADP
ADV
AUX
CCONJ
DET
INTJ
NOUN
NUM
PART
PRON
PROPN
PUNCT
SCONJ
SYM
VERB
X
Metrics on evaluation set π§Ύ
Metric | # score |
---|---|
F1 | 97.25 |
Precision | 97.15 |
Recall | 97.36 |
Model in action π¨
Example of usage
from transformers import pipeline
nlp_pos = pipeline(
"ner",
model="sachaarbonel/bert-italian-cased-finetuned-pos",
tokenizer=(
'sachaarbonel/bert-spanish-cased-finetuned-pos',
{"use_fast": False}
))
text = 'Roma Γ¨ la Capitale d'Italia.'
nlp_pos(text)
'''
Output:
--------
[{'entity': 'PROPN', 'index': 1, 'score': 0.9995346665382385, 'word': 'roma'},
{'entity': 'AUX', 'index': 2, 'score': 0.9966597557067871, 'word': 'e'},
{'entity': 'DET', 'index': 3, 'score': 0.9994786977767944, 'word': 'la'},
{'entity': 'NOUN',
'index': 4,
'score': 0.9995198249816895,
'word': 'capitale'},
{'entity': 'ADP', 'index': 5, 'score': 0.9990894198417664, 'word': 'd'},
{'entity': 'PART', 'index': 6, 'score': 0.57159024477005, 'word': "'"},
{'entity': 'PROPN',
'index': 7,
'score': 0.9994804263114929,
'word': 'italia'},
{'entity': 'PUNCT', 'index': 8, 'score': 0.9772886633872986, 'word': '.'}]
'''
Yeah! Not too bad π
Created by Sacha Arbonel/@sachaarbonel | LinkedIn
Made with β₯ in Paris
- Downloads last month
- 1,005
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.