Original model card
Buy me a coffee if you like this project ;)
Description
GGML Format model files for This project.
inference
import ctransformers
from ctransformers import AutoModelForCausalLM
model = AutoModelForCausalLM.from_pretrained(output_dir, ggml_file,
gpu_layers=32, model_type="llama")
manual_input: str = "Tell me about your last dream, please."
llm(manual_input,
max_new_tokens=256,
temperature=0.9,
top_p= 0.7)
Original model card
Baichuan-7B-Instruction
介绍
Baichuan-7B-Instruction 为 Baichuan-7B 系列模型进行指令微调后的版本,预训练模型可见 Baichuan-7B。
Demo
如下是一个使用 gradio 的模型 demo
import gradio as gr
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("AlpachinoNLP/Baichuan-7B-Instruction",trust_remote_code=True,use_fast=False)
model = AutoModelForCausalLM.from_pretrained("AlpachinoNLP/Baichuan-7B-Instruction",trust_remote_code=True ).half()
model.cuda()
def generate(histories, max_new_tokens=2048, do_sample = True, top_p = 0.95, temperature = 0.35, repetition_penalty=1.1):
prompt = ""
for history in histories:
history_with_identity = "\nHuman:" + history[0] + "\n\nAssistant:" + history[1]
prompt += history_with_identity
input_ids = tokenizer(prompt, return_tensors="pt").input_ids.to(model.device)
outputs = model.generate(
input_ids = input_ids,
max_new_tokens=max_new_tokens,
early_stopping=True,
do_sample=do_sample,
top_p=top_p,
temperature=temperature,
repetition_penalty=repetition_penalty,
)
rets = tokenizer.batch_decode(outputs, skip_special_tokens=True)
generate_text = rets[0].replace(prompt, "")
return generate_text
with gr.Blocks() as demo:
chatbot = gr.Chatbot()
msg = gr.Textbox()
clear = gr.Button("clear")
def user(user_message, history):
return "", history + [[user_message, ""]]
def bot(history):
print(history)
bot_message = generate(history)
history[-1][1] = bot_message
return history
msg.submit(user, [msg, chatbot], [msg, chatbot], queue=False).then(
bot, chatbot, chatbot
)
clear.click(lambda: None, None, chatbot, queue=False)
if __name__ == "__main__":
demo.launch(server_name="0.0.0.0")
量化部署
Baichuan-7B 支持 int8 和 int4 量化,用户只需在推理代码中简单修改两行即可实现。请注意,如果是为了节省显存而进行量化,应加载原始精度模型到 CPU 后再开始量化;避免在 from_pretrained
时添加 device_map='auto'
或者其它会导致把原始精度模型直接加载到 GPU 的行为的参数。
使用 int8 量化 (To use int8 quantization):
model = AutoModelForCausalLM.from_pretrained("AlpachinoNLP/Baichuan-7B-Instruction", torch_dtype=torch.float16, trust_remote_code=True)
model = model.quantize(8).cuda()
同样的,如需使用 int4 量化 (Similarly, to use int4 quantization):
model = AutoModelForCausalLM.from_pretrained("AlpachinoNLP/Baichuan-7B-Instruction", torch_dtype=torch.float16, trust_remote_code=True)
model = model.quantize(4).cuda()
训练详情
数据集:https://huggingface.co/datasets/shareAI/ShareGPT-Chinese-English-90k。
硬件:8*A40
测评结果
CMMLU
Model 5-shot | STEM | Humanities | Social Sciences | Others | China Specific | Average |
---|---|---|---|---|---|---|
Baichuan-7B | 34.4 | 47.5 | 47.6 | 46.6 | 44.3 | 44.0 |
Vicuna-13B | 31.8 | 36.2 | 37.6 | 39.5 | 34.3 | 36.3 |
Chinese-Alpaca-Plus-13B | 29.8 | 33.4 | 33.2 | 37.9 | 32.1 | 33.4 |
Chinese-LLaMA-Plus-13B | 28.1 | 33.1 | 35.4 | 35.1 | 33.5 | 33.0 |
Ziya-LLaMA-13B-Pretrain | 29.0 | 30.7 | 33.8 | 34.4 | 31.9 | 32.1 |
LLaMA-13B | 29.2 | 30.8 | 31.6 | 33.0 | 30.5 | 31.2 |
moss-moon-003-base (16B) | 27.2 | 30.4 | 28.8 | 32.6 | 28.7 | 29.6 |
Baichuan-13B-Base | 41.7 | 61.1 | 59.8 | 59.0 | 56.4 | 55.3 |
Baichuan-13B-Chat | 42.8 | 62.6 | 59.7 | 59.0 | 56.1 | 55.8 |
Baichuan-13B-Instruction | 44.50 | 61.16 | 59.07 | 58.34 | 55.55 | 55.61 |
Baichuan-7B-Instruction | 34.68 | 47.38 | 47.13 | 45.11 | 44.51 | 43.57 |
Model zero-shot | STEM | Humanities | Social Sciences | Others | China Specific | Average |
---|---|---|---|---|---|---|
ChatGLM2-6B | 41.28 | 52.85 | 53.37 | 52.24 | 50.58 | 49.95 |
Baichuan-7B | 32.79 | 44.43 | 46.78 | 44.79 | 43.11 | 42.33 |
ChatGLM-6B | 32.22 | 42.91 | 44.81 | 42.60 | 41.93 | 40.79 |
BatGPT-15B | 33.72 | 36.53 | 38.07 | 46.94 | 38.32 | 38.51 |
Chinese-LLaMA-7B | 26.76 | 26.57 | 27.42 | 28.33 | 26.73 | 27.34 |
MOSS-SFT-16B | 25.68 | 26.35 | 27.21 | 27.92 | 26.70 | 26.88 |
Chinese-GLM-10B | 25.57 | 25.01 | 26.33 | 25.94 | 25.81 | 25.80 |
Baichuan-13B | 42.04 | 60.49 | 59.55 | 56.60 | 55.72 | 54.63 |
Baichuan-13B-Chat | 37.32 | 56.24 | 54.79 | 54.07 | 52.23 | 50.48 |
Baichuan-13B-Instruction | 42.56 | 62.09 | 60.41 | 58.97 | 56.95 | 55.88 |
Baichuan-7B-Instruction | 33.94 | 46.31 | 47.73 | 45.84 | 44.88 | 43.53 |
说明:CMMLU 是一个综合性的中文评估基准,专门用于评估语言模型在中文语境下的知识和推理能力。我们直接使用其官方的评测脚本对模型进行评测。Model zero-shot 表格中 Baichuan-13B-Chat 的得分来自我们直接运行 CMMLU 官方的评测脚本得到,其他模型的的得分来自于 CMMLU 官方的评测结果.
英文能力评测
除了中文榜单的测试,我们同样测试了模型在英文榜单 MMLU 上的能力。
MMLU
MMLU 是一个包含了57种任务的英文评测数据集。 我们采用了开源的评测方案 , 评测结果如下:
Model | Humanities | Social Sciences | STEM | Other | Average |
---|---|---|---|---|---|
LLaMA-7B2 | 34.0 | 38.3 | 30.5 | 38.1 | 35.1 |
Falcon-7B1 | - | - | - | - | 35.0 |
mpt-7B1 | - | - | - | - | 35.6 |
ChatGLM-6B0 | 35.4 | 41.0 | 31.3 | 40.5 | 36.9 |
BLOOM 7B0 | 25.0 | 24.4 | 26.5 | 26.4 | 25.5 |
BLOOMZ 7B0 | 31.3 | 42.1 | 34.4 | 39.0 | 36.1 |
moss-moon-003-base (16B)0 | 24.2 | 22.8 | 22.4 | 24.4 | 23.6 |
moss-moon-003-sft (16B)0 | 30.5 | 33.8 | 29.3 | 34.4 | 31.9 |
Baichuan-7B0 | 38.4 | 48.9 | 35.6 | 48.1 | 42.3 |
Baichuan-7B-Instruction(5-shot) | 38.9 | 49.0 | 35.3 | 48.8 | 42.6 |
Baichuan-7B-Instruction(0-shot) | 38.7 | 47.9 | 34.5 | 48.2 | 42.0 |