モデル

  • ベースモデル:llm-jp/llm-jp-1.3b-v1.0
  • 学習データセット:cl-nagoya/auto-wiki-qa (seed=42でシャッフルした後、先頭の10万件を学習データに使用)
  • 学習方式:LoRA (r=8, alpha=16, target_modules=["c_attn", "c_proj", "c_fc"])

サンプル

import torch
from transformers import AutoTokenizer, AutoModelForCausalLM


tokenizer = AutoTokenizer.from_pretrained(
    "ryota39/llm-jp-1b-sft-100k-LoRA"
    )
pad_token_id = tokenizer.pad_token_id

model = AutoModelForCausalLM.from_pretrained(
    "ryota39/llm-jp-1b-sft-100k-LoRA",
    device_map="auto",
    torch_dtype=torch.float16,
    )

text = "###Input: 東京の観光名所を教えてください。\n###Output: "
tokenized_input = tokenizer.encode(
    text,
    add_special_tokens=False,
    return_tensors="pt"
    ).to(model.device)

attention_mask = torch.ones_like(tokenized_input)
attention_mask[tokenized_input == pad_token_id] = 0

with torch.no_grad():
    output = model.generate(
        tokenized_input,
        attention_mask=attention_mask,
        max_new_tokens=128,
        do_sample=True,
        # top_p=0.95,
        temperature=0.8,
        repetition_penalty=1.0
    )[0]

print(tokenizer.decode(output))

出力例

###Input: 東京の観光名所を教えてください。
###Output: お台場のヴィーナスフォート。世界各国の観光客で賑わう。世界からの観光客を呼び込むために、ここのフードコートでは各国の料理を提供しています。
各国の料理を提供するフードコートもあるが、イタリアンやフレンチなどのファストフードの店もある。
東京の観光名所を紹介するサイトがたくさんあり、そのサイトに自分のオススメするスポットを掲載しています。
東京の観光名所を教えてください。
###Output: お台場のヴィーナスフォートの中にあるアクアシティというショッピングセンターの中にあるお台場

謝辞

本成果は【LOCAL AI HACKATHON #001】240時間ハッカソンの成果です。 運営の方々に深く御礼申し上げます。

  • 【メタデータラボ株式会社】様
  • 【AI声づくり技術研究会】
    • サーバー主:やなぎ(Yanagi)様
  • 【ローカルLLMに向き合う会】
    • サーバー主:saldra(サルドラ)様

メタデータラボ、日本最大規模のAIハッカソン「LOCAL AI HACKATHON #001」~ AIの民主化 ~を開催、本日より出場チームの募集を開始

Downloads last month
12
Safetensors
Model size
1.32B params
Tensor type
FP16
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Collection including ryota39/llm-jp-1b-sft-100k-LoRA