bge-m3-preference-classifier

This model is a fine-tuned version of BAAI/bge-m3 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3983
  • Accuracy: 0.775
  • Precision: 0.8090
  • Recall: 0.72
  • F1: 0.7619

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • training_steps: 12500

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
0.5005 0.0160 200 0.5641 0.687 0.6423 0.844 0.7295
0.4211 0.0321 400 0.5017 0.721 0.7214 0.72 0.7207
0.4291 0.0481 600 0.4614 0.743 0.7042 0.838 0.7653
0.3761 0.0641 800 0.5737 0.734 0.8703 0.55 0.6740
0.3422 0.0801 1000 0.5178 0.737 0.7627 0.688 0.7234
0.3503 0.0962 1200 0.4898 0.744 0.8005 0.65 0.7174
0.3623 0.1122 1400 0.4514 0.738 0.7668 0.684 0.7230
0.3249 0.1282 1600 0.5200 0.732 0.7239 0.75 0.7367
0.3559 0.1443 1800 0.4797 0.742 0.7138 0.808 0.7580
0.3371 0.1603 2000 0.4597 0.761 0.8028 0.692 0.7433
0.329 0.1763 2200 0.4632 0.74 0.8409 0.592 0.6948
0.3257 0.1924 2400 0.4109 0.77 0.7411 0.83 0.7830
0.3606 0.2084 2600 0.4325 0.745 0.7740 0.692 0.7307
0.3369 0.2244 2800 0.4505 0.761 0.7171 0.862 0.7829
0.3399 0.2404 3000 0.4913 0.747 0.7163 0.818 0.7638
0.3421 0.2565 3200 0.4165 0.751 0.7363 0.782 0.7585
0.321 0.2725 3400 0.4502 0.753 0.7391 0.782 0.7600
0.3229 0.2885 3600 0.4042 0.766 0.7367 0.828 0.7797
0.3384 0.3046 3800 0.4186 0.754 0.8757 0.592 0.7064
0.3026 0.3206 4000 0.4198 0.761 0.7843 0.72 0.7508
0.3323 0.3366 4200 0.3999 0.769 0.8064 0.708 0.7540
0.3185 0.3526 4400 0.4058 0.778 0.7643 0.804 0.7836
0.3563 0.3687 4600 0.4410 0.744 0.8333 0.61 0.7044
0.3329 0.3847 4800 0.4047 0.761 0.7906 0.71 0.7482
0.3027 0.4007 5000 0.4064 0.764 0.8284 0.666 0.7384
0.3042 0.4168 5200 0.4035 0.765 0.7227 0.86 0.7854
0.3085 0.4328 5400 0.4235 0.766 0.8260 0.674 0.7423
0.3309 0.4488 5600 0.4143 0.761 0.8129 0.678 0.7394
0.3201 0.4649 5800 0.4089 0.766 0.8065 0.7 0.7495
0.3145 0.4809 6000 0.4110 0.775 0.8590 0.658 0.7452
0.3109 0.4969 6200 0.4067 0.766 0.7982 0.712 0.7526
0.3269 0.5129 6400 0.4038 0.771 0.8173 0.698 0.7530
0.3271 0.5290 6600 0.4098 0.773 0.8740 0.638 0.7376
0.3387 0.5450 6800 0.4164 0.763 0.7476 0.794 0.7701
0.2832 0.5610 7000 0.4000 0.774 0.7751 0.772 0.7735
0.288 0.5771 7200 0.4003 0.776 0.7974 0.74 0.7676
0.3171 0.5931 7400 0.4015 0.771 0.8249 0.688 0.7503
0.3007 0.6091 7600 0.4099 0.776 0.8366 0.686 0.7538
0.2909 0.6252 7800 0.4090 0.775 0.8571 0.66 0.7458
0.3153 0.6412 8000 0.4135 0.774 0.7585 0.804 0.7806
0.3109 0.6572 8200 0.4157 0.773 0.7650 0.788 0.7764
0.3025 0.6732 8400 0.4030 0.766 0.7930 0.72 0.7547
0.3214 0.6893 8600 0.3960 0.776 0.7924 0.748 0.7695
0.2937 0.7053 8800 0.4014 0.77 0.7922 0.732 0.7609
0.3112 0.7213 9000 0.3981 0.777 0.8085 0.726 0.7650
0.2957 0.7374 9200 0.4131 0.769 0.7905 0.732 0.7601
0.302 0.7534 9400 0.3990 0.773 0.8027 0.724 0.7613
0.3011 0.7694 9600 0.4009 0.777 0.8244 0.704 0.7594
0.32 0.7854 9800 0.4023 0.774 0.8157 0.708 0.7580
0.2845 0.8015 10000 0.4068 0.771 0.8115 0.706 0.7551
0.3174 0.8175 10200 0.4033 0.772 0.8049 0.718 0.7590
0.3287 0.8335 10400 0.3983 0.774 0.8072 0.72 0.7611
0.3018 0.8496 10600 0.3983 0.773 0.8067 0.718 0.7598
0.2962 0.8656 10800 0.3974 0.77 0.8111 0.704 0.7537
0.3279 0.8816 11000 0.3965 0.772 0.8119 0.708 0.7564
0.2978 0.8977 11200 0.3967 0.774 0.8100 0.716 0.7601
0.3142 0.9137 11400 0.3972 0.771 0.8031 0.718 0.7582
0.3202 0.9297 11600 0.3977 0.773 0.8040 0.722 0.7608
0.297 0.9457 11800 0.3984 0.774 0.8072 0.72 0.7611
0.3244 0.9618 12000 0.3982 0.773 0.8040 0.722 0.7608
0.3078 0.9778 12200 0.3986 0.772 0.8049 0.718 0.7590
0.3244 0.9938 12400 0.3983 0.775 0.8090 0.72 0.7619

Evaluation on test split

Accuracy Precision Recall F1-score
0.7530 0.8524 0.6120 0.7125

image/png

Framework versions

  • Transformers 4.43.1
  • Pytorch 2.3.1+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1
Downloads last month
20
Safetensors
Model size
568M params
Tensor type
BF16
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for ryota39/bge-m3-preference-classifier

Base model

BAAI/bge-m3
Finetuned
(179)
this model