clip-vit-l-14-pmc-finetuned
This model is a fine-tuned version of openai/clip-vit-large-patch14 on an pmc_oa (https://huggingface.co/datasets/axiong/pmc_oa) dataset. It achieves the following results on the evaluation set:
- Loss: 1.0125
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10.0
Training results
Framework versions
- Transformers 4.31.0
- Pytorch 2.0.1
- Datasets 2.14.4
- Tokenizers 0.13.3
finetune this model use the script from run_clip.py (https://github.com/huggingface/transformers/tree/main/examples/pytorch/contrastive-image-text)
python -W ignore run_clip.py --model_name_or_path openai/clip-vit-large-patch14 \
--output_dir ./clip-vit-l-14-pmc-finetuned \
--train_file data/pmc_roco_train.csv \
--validation_file data/pmc_roco_valid.csv \
--image_column image --caption_column caption \
--max_seq_length 77 \
--do_train --do_eval \
--per_device_train_batch_size 16 --per_device_eval_batch_size 8 \
--remove_unused_columns=False \
--learning_rate="5e-5" --warmup_steps="0" --weight_decay 0.1 \
--overwrite_output_dir \
--num_train_epochs 10 \
--logging_dir ./pmc_vit_logs \
--save_total_limit 2 \
--report_to tensorboard
usage
from PIL import Image
import requests
from transformers import CLIPProcessor, CLIPModel
model = CLIPModel.from_pretrained("ryanyip7777/pmc_vit-l-14_hf")
processor = CLIPProcessor.from_pretrained("ryanyip7777/pmc_vit-l-14_hf")
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
image = Image.open(requests.get(url, stream=True).raw)
inputs = processor(text=["a photo of a cat", "a photo of a dog"], images=image, return_tensors="pt", padding=True)
outputs = model(**inputs)
logits_per_image = outputs.logits_per_image # this is the image-text similarity score
probs = logits_per_image.softmax(dim=1) # we can take the softmax to get the label probabilities
- Downloads last month
- 11
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for ryanyip7777/pmc_vit-l-14_hf
Base model
openai/clip-vit-large-patch14