wav2vec2-large-xls-r-300m-tr-cv16.1
This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the common_voice_16_1 dataset. It achieves the following results on the evaluation set:
- Loss: 0.3356
- Wer: 0.4160
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 2
- mixed_precision_training: Native AMP
Model Inference
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
model = Wav2Vec2ForCTC.from_pretrained("rumeyskeskn/wav2vec2-large-xls-r-300m-tr-cv16.1").to("cpu")
processor = Wav2Vec2Processor.from_pretrained("rumeyskeskn/wav2vec2-large-xls-r-300m-tr-cv16.1")
audio_path = "audio.wav"
audio_array, sampling_rate = librosa.load(audio_path, sr=16000)
input_values = processor(audio_array, sampling_rate=sampling_rate).input_values[0]
input_dict = processor(input_values, return_tensors="pt", padding=True)
logits = model(input_dict.input_values).logits
pred_ids = torch.argmax(logits, dim=-1)
prediction = processor.decode(pred_ids[0])
print("Prediction:")
print(prediction)
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
5.669 | 0.39 | 400 | 1.2228 | 0.8840 |
0.6809 | 0.78 | 800 | 0.6371 | 0.6557 |
0.4224 | 1.17 | 1200 | 0.4607 | 0.5226 |
0.3151 | 1.56 | 1600 | 0.3671 | 0.4457 |
0.2633 | 1.95 | 2000 | 0.3356 | 0.4160 |
Framework versions
- Transformers 4.38.2
- Pytorch 2.2.1+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2
- Downloads last month
- 4
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for rumeyskeskn/wav2vec2-large-xls-r-300m-tr-cv16.1
Base model
facebook/wav2vec2-xls-r-300m