LED_billsum_model

This model is a fine-tuned version of allenai/led-base-16384 on the billsum dataset. It achieves the following results on the evaluation set:

  • Loss: 1.6576
  • Rouge1: 0.1447
  • Rouge2: 0.0854
  • Rougel: 0.1292
  • Rougelsum: 0.1339
  • Gen Len: 20.0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 3
  • eval_batch_size: 3
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum Gen Len
1.4849 1.0 330 1.6511 0.1463 0.0827 0.1276 0.1337 20.0
1.3361 2.0 660 1.6056 0.148 0.0799 0.1268 0.1336 20.0
1.1727 3.0 990 1.5833 0.1459 0.0827 0.1289 0.1341 20.0
1.0601 4.0 1320 1.5987 0.1462 0.0859 0.1299 0.1344 20.0
0.9789 5.0 1650 1.6030 0.1414 0.0794 0.125 0.1302 20.0
0.8724 6.0 1980 1.6060 0.1476 0.0868 0.1298 0.1356 20.0
0.7994 7.0 2310 1.6295 0.1348 0.0758 0.1198 0.1253 20.0
0.7762 8.0 2640 1.6317 0.1422 0.0831 0.1261 0.1312 20.0
0.7087 9.0 2970 1.6501 0.1421 0.0825 0.1264 0.1311 20.0
0.7014 10.0 3300 1.6576 0.1447 0.0854 0.1292 0.1339 20.0

Framework versions

  • Transformers 4.34.1
  • Pytorch 2.1.0+cu118
  • Datasets 2.14.6
  • Tokenizers 0.14.1
Downloads last month
16
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for ruchita1010/LED_billsum_model

Finetuned
(23)
this model

Dataset used to train ruchita1010/LED_billsum_model

Evaluation results