Edit model card

vit-base-renovation

This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the renovations dataset. It achieves the following results on the evaluation set:

  • Loss: 1.0025
  • Accuracy: 0.6667

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 4
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.382 0.2 25 1.1103 0.6073
0.5741 0.4 50 1.0628 0.6210
0.5589 0.6 75 1.0025 0.6667
0.4074 0.81 100 1.1324 0.6073
0.3581 1.01 125 1.1935 0.6438
0.2618 1.21 150 1.8300 0.5023
0.1299 1.41 175 1.2577 0.6301
0.2562 1.61 200 1.0924 0.6895
0.2573 1.81 225 1.1285 0.6849
0.2471 2.02 250 1.3387 0.6256
0.0618 2.22 275 1.2246 0.6667
0.0658 2.42 300 1.4132 0.6347
0.0592 2.62 325 1.4326 0.6530
0.0464 2.82 350 1.2484 0.6849
0.0567 3.02 375 1.5350 0.6347
0.0269 3.23 400 1.4797 0.6667
0.0239 3.43 425 1.4444 0.6530
0.0184 3.63 450 1.4474 0.6575
0.0286 3.83 475 1.4621 0.6667

Framework versions

  • Transformers 4.38.2
  • Pytorch 2.2.1+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2
Downloads last month
28
Safetensors
Model size
85.8M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for rshrott/vit-base-renovation

Finetuned
(1723)
this model

Evaluation results