Model trained on the TinyStories Dataset, see https://arxiv.org/abs/2305.07759

Based on GPT-Neo architecture.

License: mit


hyperparams used to train this model:

lr = 5e-4,
lr_schedule = constant, 
wd=0.1,
adam_beta1=0.9, adam_beta2 = 0.95,
context_length=512,
batch_size=80,
gradient_accumulation_steps=16

------ EXAMPLE USAGE ---

from transformers import AutoModelForCausalLM, AutoTokenizer, GenerationConfig

model = AutoModelForCausalLM.from_pretrained('roneneldan/TinyStories-33M')
tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-neo-125M")
prompt = "Once upon a time there was"
input_ids = tokenizer.encode(prompt, return_tensors="pt")

# Generate completion
output = model.generate(input_ids, max_length = 1000, num_beams=1)

# Decode the completion
output_text = tokenizer.decode(output[0], skip_special_tokens=True)

# Print the generated text
print(output_text)
Downloads last month
10,939
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for roneneldan/TinyStories-33M

Finetunes
8 models
Quantizations
10 models

Dataset used to train roneneldan/TinyStories-33M

Spaces using roneneldan/TinyStories-33M 29