Edit model card

The SloVlo (Slovenske Vložitve) project brings purposefully built embeddings and semantic search capabilities to the Slovenian language. The slovlo-v1 model can be used to implement semantic search applications over Slovenian documents. See an example in the usage section below.

The base model is the e5-multilingual-base model. The model has 12 layers and the embedding size is 768.

The model was trained and evaluated on the slovlo-dataset-v1 dataset.

The code is released in the slovlo repository on Github.

Usage

Via Sentence Transformers

from sentence_transformers import SentenceTransformer
import torch

model = SentenceTransformer("rokn/slovlo-v1")

query = "Kam na pohod iz glavnega mesta Slovenije?"

# First, we define the documents we want to search over.
# In our case, that is a list of destination descriptions.
documents = [
    "Triglav je najvišja gora v Sloveniji (2864 m) in simbol slovenske narodne identitete. Pohod je zahteven in običajno traja dva dni. Potrebna je dobra fizična pripravljenost in osnovno znanje plezanja. Priporočena je tudi uporaba vodnika za manj izkušene pohodnike.",
    "Velika Planina je zelo priljubljena pohodniška destinacija z značilnimi pastirskimi kočami. Pohod je primeren za vse starosti in ponuja čudovite razglede na okoliške gore. Na vrh se lahko povzpnete peš ali z nihalko iz Kamniške Bistrice.",
    "Bled je znan po kremnih rezinah. Če vas zanima pohod, so pa zraven še Ojstrica, ter Mala in Velika Osojnica.",
    "Golica je znana po neskončnih poljih narcis v maju. Pohod se začne iz vasi Planina pod Golico in traja približno 2-3 ure. Pot je primerna za vse pohodnike in ponuja lepe razglede na Julijske Alpe in Avstrijo.",
    "Šmarna Gora je najbolj priljubljena pohodniška destinacija v bližini Ljubljane. Pohod traja približno 1 uro iz Tacna. Na vrhu je koča, kjer lahko uživate v tradicionalni slovenski hrani in lepih razgledih na Ljubljansko kotlino.",
    "Pohorje je pohodniško območje z različnimi potmi, primernimi za vse starosti in pripravljenosti. Posebej priljubljena je pot do Črnega jezera in Slivniškega jezera. Pozimi je Pohorje tudi priljubljena smučarska destinacija.",
]

# Embed the documents (destinations).
document_embeddings = model.encode(documents, prompt_name="document")

# Embed the user query.
query_embedding = model.encode(query, prompt_name="query")

# Compute dot product between the query and each document.
similarities = model.similarity(query_embedding, document_embeddings)

# Find the nearest neighbor.
nearest_index = torch.argmax(similarities).item()

print("Predlog za tvojo naslednjo avanturo:", documents[nearest_index])

Via Transformers

import sys
from typing import List

import torch
from transformers import AutoModel, AutoTokenizer

device = "cuda" if torch.cuda.is_available() else "cpu"

query = "Kam na pohod iz glavnega mesta Slovenije?"

# First, we define the documents we want to search over.
# In our case, that is a list of destination descriptions.
documents = [
    "Triglav je najvišja gora v Sloveniji (2864 m) in simbol slovenske narodne identitete. Pohod je zahteven in običajno traja dva dni. Potrebna je dobra fizična pripravljenost in osnovno znanje plezanja. Priporočena je tudi uporaba vodnika za manj izkušene pohodnike.",
    "Velika Planina je zelo priljubljena pohodniška destinacija z značilnimi pastirskimi kočami. Pohod je primeren za vse starosti in ponuja čudovite razglede na okoliške gore. Na vrh se lahko povzpnete peš ali z nihalko iz Kamniške Bistrice.",
    "Bled je znan po kremnih rezinah. Če vas zanima pohod, so pa zraven še Ojstrica, ter Mala in Velika Osojnica.",
    "Golica je znana po neskončnih poljih narcis v maju. Pohod se začne iz vasi Planina pod Golico in traja približno 2-3 ure. Pot je primerna za vse pohodnike in ponuja lepe razglede na Julijske Alpe in Avstrijo.",
    "Šmarna Gora je najbolj priljubljena pohodniška destinacija v bližini Ljubljane. Pohod traja približno 1 uro iz Tacna. Na vrhu je koča, kjer lahko uživate v tradicionalni slovenski hrani in lepih razgledih na Ljubljansko kotlino.",
    "Pohorje je pohodniško območje z različnimi potmi, primernimi za vse starosti in pripravljenosti. Posebej priljubljena je pot do Črnega jezera in Slivniškega jezera. Pozimi je Pohorje tudi priljubljena smučarska destinacija.",
]

# Load the model and the tokenizer.
slovlo_model = AutoModel.from_pretrained("rokn/slovlo-v1").eval().to(device)
slovlo_tokenizer = AutoTokenizer.from_pretrained("rokn/slovlo-v1")


def get_embeddings(texts: List[str], prefix: str):
    def mean_pool(
        last_hidden_states: torch.Tensor, attention_mask: torch.Tensor
    ) -> torch.Tensor:
        last_hidden = last_hidden_states.masked_fill(
            ~attention_mask[..., None].bool(), 0.0
        )
        return last_hidden.sum(dim=1) / attention_mask.sum(dim=1)[..., None]

    prefixed_texts = [f"{prefix}{text}" for text in texts]
    inputs = slovlo_tokenizer(
        prefixed_texts, return_tensors="pt", truncation=True, padding=True
    ).to(device)

    with torch.no_grad():
        model_output = slovlo_model(**inputs)

    embeddings = mean_pool(model_output.last_hidden_state, inputs["attention_mask"])
    return torch.nn.functional.normalize(embeddings, p=2, dim=1)


# Embed the documents (destinations).
document_embeddings = get_embeddings(documents, "document: ")

# Embed the user query.
query_embedding = get_embeddings([query], "query: ")

# Compute dot product between the query and each document.
similarities = torch.matmul(document_embeddings, query_embedding.T).squeeze()

# Find the nearest neighbor.
nearest_index = torch.argmax(similarities).item()

print("Predlog za tvojo naslednjo avanturo:", documents[nearest_index])

Evaluation

MRR@k on the slovlo-dataset-v1 test split:

Model MRR@1 MRR@5 MRR@10
Elasticsearch (BM25) 31.7 45.2 45.8
e5-base-v2 25.1 36.5 37.2
multilingual-e5-base 37.2 53.9 54.5
bge-m3 38.1 54.1 54.7
slovlo-v1 43.6 60.4 61.0
Downloads last month
1,430
Safetensors
Model size
278M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train rokn/slovlo-v1