Edit model card

Knots ProtBert-BFD AlphaFold

Fine-tuned ProtBert-BFD to classify proteins as knotted vs. unknotted.

Model Details

Model Sources:

  • Repository: CEITEC
  • Paper: TBD

Usage

Dataset format:

id,sequence,label
A0A2W5F4Z7,MGGIFRVNTYYTDLEPYLQSTKLPIYGALLDGENIYELVDKSKGILVIGNESKGIRSTIQNFIQKPITIPRIGQAESLNAAVATGIIVGQLTL,1
...

Load the dataset:

import pandas as pd
from datasets import Dataset, load_dataset

df = pd.read_csv(INPUT, sep=',')
dss = Dataset.from_pandas(df)

Predict:

import torch
import numpy as np
from transformers import AutoModelForSequenceClassification, AutoTokenizer, Trainer, TrainingArguments
from math import exp

def tokenize_function(s):
    seq_split = ' '.join(s['Sequence'])
    return tokenizerM1(seq_split)

tokenizer = AutoTokenizer.from_pretrained('roa7n/knots_protbertBFD_alphafold')
model = AutoModelForSequenceClassification.from_pretrained('roa7n/knots_protbertBFD_alphafold')

tokenized_dataset = dss.map(tokenize_function, num_proc=4)
tokenized_dataset.set_format('pt')
tokenized_dataset

training_args = TrainingArguments(<PATH>, fp16=True, per_device_eval_batch_size=50, report_to='none')  

trainer = Trainer(
    model,
    training_args,
    train_dataset=tokenized_dataset,
    eval_dataset=tokenized_dataset,
    tokenizer=tokenizerM1
)

predictions, _, _ = trainer.predict(tokenized_dataset)
predictions = [np.exp(p[1]) / np.sum(np.exp(p), axis=0) for p in predictions]
df['preds'] = predictions

Evaluation

Per protein family metrics:

M1 ProtBert-BFD Dataset size Unknotted set size Accuracy TPR TNR
All 39412 19718 0.9845 0.9865 0.9825
SPOUT 7371 550 0.9887 0.9951 0.9090
TDD 612 24 0.9901 0.9965 0.8333
DUF 716 429 0.9748 0.9721 0.9766
AdoMet synthase 1794 240 0.9899 0.9929 0.9708
Carbonic anhydrase 1531 539 0.9588 0.9737 0.9313
UCH 477 125 0.9056 0.9602 0.7520
ATCase/OTCase 3799 3352 0.9994 0.9977 0.9997
ribosomal-mitochondrial 147 41 0.8571 1.0000 0.4878
membrane 8225 1493 0.9811 0.9904 0.9390
VIT 14262 12555 0.9872 0.9420 0.9933
biosynthesis of lantibiotics 392 286 0.9642 0.9528 0.9685

Citation [optional]

BibTeX: TODO

Model Authors

Simecek: simecek@mail.muni.cz Klimentova: vae@mail.muni.cz Sramkova: denisa.sramkova@mail.muni.cz

Downloads last month
95
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train roa7n/knots_protbertBFD_alphafold