Finetuning

This model is a fine-tuned version of meta-llama/Llama-2-7b-hf on the IITB English to Hindi dataset. source group: English target group: Hindi

Model description

meta-llama/Llama-2-7b-hf finetuned for translation task in Hindi language

Training and evaluation data

cfilt/iitb-english-hindi

Training hyperparameters

The following hyperparameters were used during training:

  • num_train_epochs=1
  • per_device_train_batch_size=4
  • per_device_eval_batch_size = 4
  • gradient_accumulation_steps=1
  • optim="paged_adamw_32bit"
  • learning_rate=2e-4
  • weight_decay=0.001
  • fp16=True
  • max_grad_norm=0.3
  • max_steps=-1
  • warmup_ratio=0.03
  • group_by_length=True
  • lr_scheduler_type="constant"

Benchamark Evaluation

  • BLEU score on Tatoeba: 12.605968092174914
  • BLUE score on IN-22: 25.893729634826876

Training procedure

The following bitsandbytes quantization config was used during training:

  • load_in_8bit: False
  • load_in_4bit: True
  • llm_int8_threshold: 6.0
  • llm_int8_skip_modules: None
  • llm_int8_enable_fp32_cpu_offload: False
  • llm_int8_has_fp16_weight: False
  • bnb_4bit_quant_type: nf4
  • bnb_4bit_use_double_quant: False
  • bnb_4bit_compute_dtype: float16

Framework versions

  • PEFT 0.4.0
  • Transformers 4.42.3
  • Pytorch 2.1.2
  • Datasets 2.20.0
  • Tokenizers 0.19.1
Downloads last month
0
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for ritika-kumar/finetuned-llama2-7b-en-hi

Adapter
(1768)
this model

Dataset used to train ritika-kumar/finetuned-llama2-7b-en-hi