openai/whisper-medium.en

This model is a fine-tuned version of openai/whisper-medium.en on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1748
  • Wer: 2.7097

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 4000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.0329 5.0 500 0.1343 4.0125
0.0013 10.01 1000 0.1531 2.8810
0.0002 15.01 1500 0.1609 2.7321
0.0002 20.01 2000 0.1608 2.7544
0.0001 25.01 2500 0.1688 2.7321
0.0002 30.02 3000 0.1722 2.7172
0.0001 35.02 3500 0.1742 2.7172
0.0001 40.02 4000 0.1748 2.7097

Framework versions

  • Transformers 4.27.0.dev0
  • Pytorch 1.13.1+cu117
  • Datasets 2.9.1.dev0
  • Tokenizers 0.13.2
Downloads last month
3
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Evaluation results