File size: 6,084 Bytes
3b4fd7d 2982cc3 8674c99 3b4fd7d 2982cc3 3b4fd7d 5f4e356 2982cc3 5f4e356 2982cc3 5f4e356 3b4fd7d 5f4e356 3b4fd7d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 |
---
thumbnail: https://github.com/rinnakk/japanese-pretrained-models/blob/master/rinna.png
datasets:
- databricks/databricks-dolly-15k
- kunishou/databricks-dolly-15k-ja
- izumi-lab/llm-japanese-dataset
language:
- ja
- en
tags:
- qwen
inference: false
license: other
license_name: tongyi-qianwen-license-agreement
license_link: >-
https://github.com/QwenLM/Qwen/blob/main/Tongyi%20Qianwen%20LICENSE%20AGREEMENT
base_model: rinna/nekomata-7b
---
# `rinna/nekomata-7b-instruction`
![rinna-icon](./rinna.png)
# Overview
The model is the instruction-tuned version of [`rinna/nekomata-7b`](https://huggingface.co/rinna/nekomata-7b). It adopts the Alpaca input format.
* **Model architecture**
A 32-layer, 4096-hidden-size transformer-based language model. Please refer to the [Qwen paper](https://arxiv.org/abs/2309.16609) for architecture details.
* **Fine-tuning**
The fine-tuning data is the subset of the following datasets.
* [Databricks Dolly data](https://huggingface.co/datasets/databricks/databricks-dolly-15k)
* [Japanese Databricks Dolly data](https://huggingface.co/datasets/kunishou/databricks-dolly-15k-ja)
* [FLAN Instruction Tuning data](https://github.com/google-research/FLAN) and its Japanese translation
* [Izumi lab LLM Japanese dataset](https://github.com/masanorihirano/llm-japanese-dataset/tree/main)
* The following sections are used
* alt
* aozora-txt
* CourseraParallel
* ParaNatCom
* Tab-delimited_Bilingual_Sentence_Pairs
* tanaka-corpus
* wikinews
* wordnet
* yasashi-japanese
* The [remaining sections](https://github.com/masanorihirano/llm-japanese-dataset/tree/main/datasets-cc-by-sa) contain commonly used evaluation corpora so they are skipped to prevent data leak.
* **Contributors**
- [Tianyu Zhao](https://huggingface.co/tianyuz)
- [Kei Sawada](https://huggingface.co/keisawada)
---
# Benchmarking
Please refer to [rinna's LM benchmark page](https://rinnakk.github.io/research/benchmarks/lm/index.html).
---
# How to use the model
~~~~python
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("rinna/nekomata-7b-instruction", trust_remote_code=True)
# Use GPU with bf16
# model = AutoModelForCausalLM.from_pretrained("rinna/nekomata-7b-instruction", device_map="auto", trust_remote_code=True, bf16=True)
# Use GPU with fp16
# model = AutoModelForCausalLM.from_pretrained("rinna/nekomata-7b-instruction", device_map="auto", trust_remote_code=True, fp16=True)
# Use CPU
# model = AutoModelForCausalLM.from_pretrained("rinna/nekomata-7b-instruction", device_map="cpu", trust_remote_code=True)
# Automatically select device and precision
model = AutoModelForCausalLM.from_pretrained("rinna/nekomata-7b-instruction", device_map="auto", trust_remote_code=True)
instruction = "次の日本語を英語に翻訳してください。"
input = "大規模言語モデル(だいきぼげんごモデル、英: large language model、LLM)は、多数のパラメータ(数千万から数十億)を持つ人工ニューラルネットワークで構成されるコンピュータ言語モデルで、膨大なラベルなしテキストを使用して自己教師あり学習または半教師あり学習によって訓練が行われる。"
prompt = f"""
以下は、タスクを説明する指示と、文脈のある入力の組み合わせです。要求を適切に満たす応答を書きなさい。
### 指示:
{instruction}
### 入力:
{input}
### 応答:
"""
token_ids = tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt")
with torch.no_grad():
output_ids = model.generate(
token_ids.to(model.device),
max_new_tokens=200,
do_sample=True,
temperature=0.5,
pad_token_id=tokenizer.pad_token_id,
bos_token_id=tokenizer.bos_token_id,
eos_token_id=tokenizer.eos_token_id
)
output = tokenizer.decode(output_ids.tolist()[0])
print(output)
"""
以下は、タスクを説明する指示と、文脈のある入力の組み合わせです。要求を適切に満たす応答を書きなさい。
### 指示:
次の日本語を英語に翻訳してください。
### 入力:
大規模言語モデル(だいきぼげんごモデル、英: large language model、LLM)は、多数のパラメータ(数千万から数十億)を持つ人工ニューラルネットワークで構成されるコンピュータ言語モデルで、膨大なラベルなしテキストを使 用して自己教師あり学習または半教師あり学習によって訓練が行われる。
### 応答:
A large language model (LLM) is a computer language model composed of artificial neural networks with many parameters (from tens of millions to billions) trained by self-supervised learning or semi-supervised learning using a large amount of unlabeled text.<|endoftext|>
"""
~~~~
---
# Tokenization
Please refer to [`rinna/nekomata-7b`](https://huggingface.co/rinna/nekomata-7b) for tokenization details.
---
# How to cite
```bibtex
@misc{rinna-nekomata-7b-instruction,
title = {rinna/nekomata-7b-instruction},
author = {Zhao, Tianyu and Sawada, Kei},
url = {https://huggingface.co/rinna/nekomata-7b-instruction}
}
@inproceedings{sawada2024release,
title = {Release of Pre-Trained Models for the {J}apanese Language},
author = {Sawada, Kei and Zhao, Tianyu and Shing, Makoto and Mitsui, Kentaro and Kaga, Akio and Hono, Yukiya and Wakatsuki, Toshiaki and Mitsuda, Koh},
booktitle = {Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)},
month = {5},
year = {2024},
pages = {13898--13905},
url = {https://aclanthology.org/2024.lrec-main.1213},
note = {\url{https://arxiv.org/abs/2404.01657}}
}
```
---
# License
[Tongyi Qianwen LICENSE AGREEMENT](https://github.com/QwenLM/Qwen/blob/main/Tongyi%20Qianwen%20LICENSE%20AGREEMENT) |