Edit model card




  • 2023/08/02 We uploaded the newly trained rinna/bilingual-gpt-neox-4b-instruction-sft with the MIT license.
    • Please refrain from using the previous model released on 2023/07/31 for commercial purposes if you have already downloaded it.
    • The new model released on 2023/08/02 is built from datasets with less strict licenses and has better evaluation performance, so we suggest using the new model.
    • For reference, we provide the MD5 checksum values for the pytorch_model.bin files of the previous and current models.
      • 2023/07/31 model: edf190a323c0ae63f71476700fb0b462
      • 2023/08/02 model: de72aa5b66beee7b65783c96f687d186
  • 2023/07/31 In the previously released rinna/bilingual-gpt-neox-4b-instruction-sft, we found that part of the training data (i.e. Openchat ShareGPT4 and WizardLM) have a non-commercial license, and thus it does not comply with the MIT license. We decided to remove the previous version and build a new SFT model from datasets with less strict licenses. The new model will be uploaded in a few days. We sincerely apologize for our careless mistake.


This repository provides an English-Japanese bilingual GPT-NeoX model of 3.8 billion parameters.

The model is based on rinna/bilingual-gpt-neox-4b and has been finetuned to serve as an instruction-following conversational agent.


Our evaluation experiments suggest that the bilingual-gpt-neox-4b-instruction-sft model performs slightly better than the previous Japanese GPT-NeoX 3.6B PPO in Japanese tasks.

  • The 4-task average accuracy is based on results of JCommonsenseQA, JNLI, MARC-ja, and JSQuAD.
  • The 6-task average accuracy is based on results of JCommonsenseQA, JNLI, MARC-ja, JSQuAD, XWinograd, and JAQKET-v2.
Model 4-task average accuracy 6-task average accuracy
bilingual-gpt-neox-4b-instruction-ppo 61.01 61.16
bilingual-gpt-neox-4b-instruction-sft 61.02 61.69
bilingual-gpt-neox-4b 56.12 51.83
japanese-gpt-neox-3.6b-instruction-ppo 59.86 60.07
japanese-gpt-neox-3.6b 55.07 50.32

I/O Format

A special format has been adopted to construct inputs.

  • An input prompt is formatted as a conversation between ユーザー and システム.
  • Each input utterance consists of (1) its speaker ("ユーザー" or "システム"), (2) a colon (":"), (3) a whitespace (" "), and (4) utterance text (e.g. "世界で一番高い山は?").
  • The input prompt should be ended with "システム: " to acknowledge the model to generate a response.
  • All the utterances in the input prompt should be separated by a newline \n.

Following is an example to construct input from a conversation.

prompt = [
        "speaker": "ユーザー",
        "text": "Hello, you are an assistant that helps me learn Japanese."
        "speaker": "システム",
        "text": "Sure, what can I do for you?"
        "speaker": "ユーザー",
        "text": "VRはなんですか。"
prompt = [
    f"{uttr['speaker']}: {uttr['text']}"
    for uttr in prompt
prompt = "\n".join(prompt)
prompt = (
    + "\n"
    + "システム: "
ユーザー: Hello, you are an assistant that helps me learn Japanese.
システム: Sure, what can I do for you?
ユーザー: VRはなんですか。

How to use the model

Notice: Since the model is sensitive to decoding hyper-parameters (e.g. temperature, top_p, top_k, repetition_penalty), it is suggested to explore the best setting for your task.

import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

tokenizer = AutoTokenizer.from_pretrained("rinna/bilingual-gpt-neox-4b-instruction-sft", use_fast=False)
model = AutoModelForCausalLM.from_pretrained("rinna/bilingual-gpt-neox-4b-instruction-sft")

if torch.cuda.is_available():
    model = model.to("cuda")

token_ids = tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt")

with torch.no_grad():
    output_ids = model.generate(

output = tokenizer.decode(output_ids.tolist()[0][token_ids.size(1):])
"""VRとはVirtual Realityの略で、仮想現実とも呼ばれます。これは、コンピューターを使用して仮想世界を作り出し、仮想世界上でコンピューターのゲームや仮想世界を体験するための技術です。この技術は、コンピューターやモバイ ルデバイスの進歩によって、2015年以降、ますます普及しています。VRは、ゲームや仮想世界、その他のアプリケー ションなどのさまざまな分野で、コンピューターと人間の相互作用の新しい方法を提供しています。</s>"""


The model uses a sentencepiece-based tokenizer.

  • The tokenizer has a vocabulary size of 65,536.
  • It uses byte fallback to decompose unknown text pieces into UTF-8 byte pieces to avoid producing <UNK> tokens.
  • It can recognize consecutive whitespaces, newlines, and tabs to handle structured texts better.
  • We turned off the default behaviour of prepending leading whitespace because it is not beneficial for processing Japanese.
  • Specifically, single whitespace is always processed as one token so that any English word won't have a preceding whitespace like in many other tokenizers (e.g. _Hello).
    • This decision trades the English processing efficiency for a unified way to treat whitespaces.
    • It leads to a significantly lower loss of next token prediction on English data because whitespaces are easy to predict.
  • Don't forget to set use_fast=False to make the above features function correctly.


The MIT license

Downloads last month
Model size
3.8B params
Tensor type
Hosted inference API

Inference API has been turned off for this model.

Dataset used to train rinna/bilingual-gpt-neox-4b-instruction-sft

Spaces using rinna/bilingual-gpt-neox-4b-instruction-sft 2