finetuning-summarization-model

This model is a fine-tuned version of google/mt5-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.3028
  • Rouge1: 29.1184
  • Rouge2: 21.1309
  • Rougel: 28.3412
  • Rougelsum: 28.4871

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5.6e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 8

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum
6.821 1.0 450 1.7464 31.7328 21.1788 30.3949 30.5202
2.1307 2.0 900 1.4939 31.3208 22.0215 30.2589 30.3872
1.7915 3.0 1350 1.4322 28.7824 19.472 27.926 28.2177
1.6186 4.0 1800 1.3830 29.2568 20.6076 28.4825 28.6486
1.5148 5.0 2250 1.3504 29.308 21.0698 28.4755 28.6885
1.427 6.0 2700 1.3177 29.0294 20.706 28.271 28.3385
1.3793 7.0 3150 1.3172 28.9276 20.922 28.1795 28.3241
1.3536 8.0 3600 1.3028 29.1184 21.1309 28.3412 28.4871

Framework versions

  • Transformers 4.28.1
  • Pytorch 2.0.0+cu118
  • Datasets 2.11.0
  • Tokenizers 0.13.3
Downloads last month
3
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support