SetFit with FacebookAI/roberta-Large
This is a SetFit model that can be used for Text Classification. This SetFit model uses FacebookAI/roberta-Large as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
- Fine-tuning a Sentence Transformer with contrastive learning.
- Training a classification head with features from the fine-tuned Sentence Transformer.
Model Details
Model Description
- Model Type: SetFit
- Sentence Transformer body: FacebookAI/roberta-Large
- Classification head: a LogisticRegression instance
- Maximum Sequence Length: 512 tokens
- Number of Classes: 2 classes
Model Sources
- Repository: SetFit on GitHub
- Paper: Efficient Few-Shot Learning Without Prompts
- Blogpost: SetFit: Efficient Few-Shot Learning Without Prompts
Model Labels
Label | Examples |
---|---|
True |
|
False |
|
Uses
Direct Use for Inference
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("richie-ghost/setfit-FacebookAI-roberta-Large-MentalHealth-Topic-Check")
# Run inference
preds = model("Understanding stock market trends")
Training Details
Training Set Metrics
Training set | Min | Median | Max |
---|---|---|---|
Word count | 4 | 6.4583 | 11 |
Label | Training Sample Count |
---|---|
True | 22 |
False | 26 |
Training Hyperparameters
- batch_size: (16, 16)
- num_epochs: (8, 8)
- max_steps: -1
- sampling_strategy: oversampling
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: True
Training Results
Epoch | Step | Training Loss | Validation Loss |
---|---|---|---|
0.0132 | 1 | 0.4868 | - |
0.6579 | 50 | 0.0286 | - |
1.0 | 76 | - | 0.0079 |
1.3158 | 100 | 0.0028 | - |
1.9737 | 150 | 0.0005 | - |
2.0 | 152 | - | 0.0015 |
2.6316 | 200 | 0.0003 | - |
3.0 | 228 | - | 0.001 |
3.2895 | 250 | 0.0006 | - |
3.9474 | 300 | 0.0002 | - |
4.0 | 304 | - | 0.0009 |
4.6053 | 350 | 0.0001 | - |
5.0 | 380 | - | 0.0004 |
5.2632 | 400 | 0.0002 | - |
5.9211 | 450 | 0.0001 | - |
6.0 | 456 | - | 0.0005 |
6.5789 | 500 | 0.0001 | - |
7.0 | 532 | - | 0.0006 |
7.2368 | 550 | 0.0001 | - |
7.8947 | 600 | 0.0002 | - |
8.0 | 608 | - | 0.0008 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.10.12
- SetFit: 1.0.3
- Sentence Transformers: 2.7.0
- Transformers: 4.40.0
- PyTorch: 2.2.1+cu121
- Datasets: 2.19.0
- Tokenizers: 0.19.1
Citation
BibTeX
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
- Downloads last month
- 2
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.