richie-ghost's picture
Add new SentenceTransformer model
5ddfcc8 verified
---
base_model: sentence-transformers/all-mpnet-base-v2
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
- dot_accuracy@1
- dot_accuracy@3
- dot_accuracy@5
- dot_accuracy@10
- dot_precision@1
- dot_precision@3
- dot_precision@5
- dot_precision@10
- dot_recall@1
- dot_recall@3
- dot_recall@5
- dot_recall@10
- dot_ndcg@10
- dot_mrr@10
- dot_map@100
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:48393
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: Tennis champ Rafael Nadal lunges to return a ball.
sentences:
- The tennis champ has decided to quit playing tennis.
- A woman stands alone at a restaurant.
- A blond woman running
- source_sentence: Small girl getting her face painted.
sentences:
- A Meijer in Illinois selling groceries.
- Two men are posing together.
- A small girl washing her face.
- source_sentence: because too too often they're can be extremism that that hurts
from from any direction regardless of whatever whatever you're arguing or concerned
about and
sentences:
- If you could stir the mothers, you are done.
- Extremism is bad.
- Steve Ballmer is a college friend of mine.
- source_sentence: The dog jumps over the log with a stick in its mouth.
sentences:
- A girl in red jumps outdoors.
- The dog is running around with something in it's mouth.
- The price is lower than what they pay.
- source_sentence: A man in black shirt sits on a stool while trying to sell stuffed
animals.
sentences:
- A man is sitting on a stool.
- A pooch runs through the grass.
- A young lady is sitting on a bench at the bus stop.
model-index:
- name: SentenceTransformer based on sentence-transformers/all-mpnet-base-v2
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: eval
type: eval
metrics:
- type: cosine_accuracy@1
value: 0.0004959394953815635
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.36964023722439193
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.4739321802740066
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.5881015849399707
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.0004959394953815635
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.12321341240813066
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.09478643605480129
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.05881015849399707
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.0004959394953815635
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.36964023722439193
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.4739321802740066
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.5881015849399707
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.3037659752455345
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.2120033429995685
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.22559046634335145
name: Cosine Map@100
- type: dot_accuracy@1
value: 0.0005579319323042589
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.3696609013700329
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.4739321802740066
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.5881429132312525
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.0005579319323042589
name: Dot Precision@1
- type: dot_precision@3
value: 0.12322030045667762
name: Dot Precision@3
- type: dot_precision@5
value: 0.09478643605480132
name: Dot Precision@5
- type: dot_precision@10
value: 0.05881429132312524
name: Dot Precision@10
- type: dot_recall@1
value: 0.0005579319323042589
name: Dot Recall@1
- type: dot_recall@3
value: 0.3696609013700329
name: Dot Recall@3
- type: dot_recall@5
value: 0.4739321802740066
name: Dot Recall@5
- type: dot_recall@10
value: 0.5881429132312525
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.30380430047413587
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.2120435150827015
name: Dot Mrr@10
- type: dot_map@100
value: 0.22562658480145822
name: Dot Map@100
---
# SentenceTransformer based on sentence-transformers/all-mpnet-base-v2
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2) <!-- at revision f1b1b820e405bb8644f5e8d9a3b98f9c9e0a3c58 -->
- **Maximum Sequence Length:** 384 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 384, 'do_lower_case': False}) with Transformer model: MPNetModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("richie-ghost/sentence-transformers-all-mpnet-base-v2")
# Run inference
sentences = [
'A man in black shirt sits on a stool while trying to sell stuffed animals.',
'A man is sitting on a stool.',
'A young lady is sitting on a bench at the bus stop.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
## Evaluation
### Metrics
#### Information Retrieval
* Dataset: `eval`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.0005 |
| cosine_accuracy@3 | 0.3696 |
| cosine_accuracy@5 | 0.4739 |
| cosine_accuracy@10 | 0.5881 |
| cosine_precision@1 | 0.0005 |
| cosine_precision@3 | 0.1232 |
| cosine_precision@5 | 0.0948 |
| cosine_precision@10 | 0.0588 |
| cosine_recall@1 | 0.0005 |
| cosine_recall@3 | 0.3696 |
| cosine_recall@5 | 0.4739 |
| cosine_recall@10 | 0.5881 |
| cosine_ndcg@10 | 0.3038 |
| cosine_mrr@10 | 0.212 |
| cosine_map@100 | 0.2256 |
| dot_accuracy@1 | 0.0006 |
| dot_accuracy@3 | 0.3697 |
| dot_accuracy@5 | 0.4739 |
| dot_accuracy@10 | 0.5881 |
| dot_precision@1 | 0.0006 |
| dot_precision@3 | 0.1232 |
| dot_precision@5 | 0.0948 |
| dot_precision@10 | 0.0588 |
| dot_recall@1 | 0.0006 |
| dot_recall@3 | 0.3697 |
| dot_recall@5 | 0.4739 |
| dot_recall@10 | 0.5881 |
| dot_ndcg@10 | 0.3038 |
| dot_mrr@10 | 0.212 |
| **dot_map@100** | **0.2256** |
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Dataset
#### Unnamed Dataset
* Size: 48,393 training samples
* Columns: <code>sentence_0</code> and <code>sentence_1</code>
* Approximate statistics based on the first 1000 samples:
| | sentence_0 | sentence_1 |
|:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 6 tokens</li><li>mean: 18.73 tokens</li><li>max: 124 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 11.35 tokens</li><li>max: 62 tokens</li></ul> |
* Samples:
| sentence_0 | sentence_1 |
|:---------------------------------------------------------------------|:------------------------------------------------------------------|
| <code>A group of kids in red and white playing soccer.</code> | <code>There are kids playing ball in a soccer tournament.</code> |
| <code>I had a great time at the theme park with my family.</code> | <code>Did you have fun at the theme park with your family?</code> |
| <code>A black and white elderly gentlemen riding an am-track.</code> | <code>A man is on a train.</code> |
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "cos_sim"
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: steps
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `num_train_epochs`: 4
- `multi_dataset_batch_sampler`: round_robin
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 5e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1
- `num_train_epochs`: 4
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.0
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `eval_use_gather_object`: False
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: round_robin
</details>
### Training Logs
| Epoch | Step | Training Loss | eval_dot_map@100 |
|:------:|:-----:|:-------------:|:----------------:|
| 0.1653 | 500 | 0.0446 | 0.2186 |
| 0.3306 | 1000 | 0.0544 | 0.2226 |
| 0.4959 | 1500 | 0.0419 | 0.2191 |
| 0.6612 | 2000 | 0.0532 | 0.2210 |
| 0.8264 | 2500 | 0.0438 | 0.2209 |
| 0.9917 | 3000 | 0.0422 | 0.2220 |
| 1.0 | 3025 | - | 0.2225 |
| 1.1570 | 3500 | 0.021 | 0.2236 |
| 1.3223 | 4000 | 0.0163 | 0.2243 |
| 1.4876 | 4500 | 0.0158 | 0.2221 |
| 1.6529 | 5000 | 0.0178 | 0.2221 |
| 1.8182 | 5500 | 0.0154 | 0.2222 |
| 1.9835 | 6000 | 0.0145 | 0.2228 |
| 2.0 | 6050 | - | 0.2247 |
| 2.1488 | 6500 | 0.0098 | 0.2250 |
| 2.3140 | 7000 | 0.0076 | 0.2239 |
| 2.4793 | 7500 | 0.0069 | 0.2253 |
| 2.6446 | 8000 | 0.0073 | 0.2245 |
| 2.8099 | 8500 | 0.0063 | 0.2245 |
| 2.9752 | 9000 | 0.0074 | 0.2251 |
| 3.0 | 9075 | - | 0.2251 |
| 3.1405 | 9500 | 0.0044 | 0.2256 |
| 3.3058 | 10000 | 0.0043 | 0.2259 |
| 3.4711 | 10500 | 0.0038 | 0.2261 |
| 3.6364 | 11000 | 0.0039 | 0.2256 |
| 3.8017 | 11500 | 0.0037 | 0.2251 |
| 3.9669 | 12000 | 0.0043 | 0.2256 |
| 4.0 | 12100 | - | 0.2256 |
### Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.2.1
- Transformers: 4.44.2
- PyTorch: 2.5.0+cu121
- Accelerate: 1.0.1
- Datasets: 3.0.2
- Tokenizers: 0.19.1
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->