|
--- |
|
base_model: sentence-transformers/all-mpnet-base-v2 |
|
library_name: sentence-transformers |
|
metrics: |
|
- cosine_accuracy@1 |
|
- cosine_accuracy@3 |
|
- cosine_accuracy@5 |
|
- cosine_accuracy@10 |
|
- cosine_precision@1 |
|
- cosine_precision@3 |
|
- cosine_precision@5 |
|
- cosine_precision@10 |
|
- cosine_recall@1 |
|
- cosine_recall@3 |
|
- cosine_recall@5 |
|
- cosine_recall@10 |
|
- cosine_ndcg@10 |
|
- cosine_mrr@10 |
|
- cosine_map@100 |
|
- dot_accuracy@1 |
|
- dot_accuracy@3 |
|
- dot_accuracy@5 |
|
- dot_accuracy@10 |
|
- dot_precision@1 |
|
- dot_precision@3 |
|
- dot_precision@5 |
|
- dot_precision@10 |
|
- dot_recall@1 |
|
- dot_recall@3 |
|
- dot_recall@5 |
|
- dot_recall@10 |
|
- dot_ndcg@10 |
|
- dot_mrr@10 |
|
- dot_map@100 |
|
pipeline_tag: sentence-similarity |
|
tags: |
|
- sentence-transformers |
|
- sentence-similarity |
|
- feature-extraction |
|
- generated_from_trainer |
|
- dataset_size:48393 |
|
- loss:MultipleNegativesRankingLoss |
|
widget: |
|
- source_sentence: Tennis champ Rafael Nadal lunges to return a ball. |
|
sentences: |
|
- The tennis champ has decided to quit playing tennis. |
|
- A woman stands alone at a restaurant. |
|
- A blond woman running |
|
- source_sentence: Small girl getting her face painted. |
|
sentences: |
|
- A Meijer in Illinois selling groceries. |
|
- Two men are posing together. |
|
- A small girl washing her face. |
|
- source_sentence: because too too often they're can be extremism that that hurts |
|
from from any direction regardless of whatever whatever you're arguing or concerned |
|
about and |
|
sentences: |
|
- If you could stir the mothers, you are done. |
|
- Extremism is bad. |
|
- Steve Ballmer is a college friend of mine. |
|
- source_sentence: The dog jumps over the log with a stick in its mouth. |
|
sentences: |
|
- A girl in red jumps outdoors. |
|
- The dog is running around with something in it's mouth. |
|
- The price is lower than what they pay. |
|
- source_sentence: A man in black shirt sits on a stool while trying to sell stuffed |
|
animals. |
|
sentences: |
|
- A man is sitting on a stool. |
|
- A pooch runs through the grass. |
|
- A young lady is sitting on a bench at the bus stop. |
|
model-index: |
|
- name: SentenceTransformer based on sentence-transformers/all-mpnet-base-v2 |
|
results: |
|
- task: |
|
type: information-retrieval |
|
name: Information Retrieval |
|
dataset: |
|
name: eval |
|
type: eval |
|
metrics: |
|
- type: cosine_accuracy@1 |
|
value: 0.0004959394953815635 |
|
name: Cosine Accuracy@1 |
|
- type: cosine_accuracy@3 |
|
value: 0.36964023722439193 |
|
name: Cosine Accuracy@3 |
|
- type: cosine_accuracy@5 |
|
value: 0.4739321802740066 |
|
name: Cosine Accuracy@5 |
|
- type: cosine_accuracy@10 |
|
value: 0.5881015849399707 |
|
name: Cosine Accuracy@10 |
|
- type: cosine_precision@1 |
|
value: 0.0004959394953815635 |
|
name: Cosine Precision@1 |
|
- type: cosine_precision@3 |
|
value: 0.12321341240813066 |
|
name: Cosine Precision@3 |
|
- type: cosine_precision@5 |
|
value: 0.09478643605480129 |
|
name: Cosine Precision@5 |
|
- type: cosine_precision@10 |
|
value: 0.05881015849399707 |
|
name: Cosine Precision@10 |
|
- type: cosine_recall@1 |
|
value: 0.0004959394953815635 |
|
name: Cosine Recall@1 |
|
- type: cosine_recall@3 |
|
value: 0.36964023722439193 |
|
name: Cosine Recall@3 |
|
- type: cosine_recall@5 |
|
value: 0.4739321802740066 |
|
name: Cosine Recall@5 |
|
- type: cosine_recall@10 |
|
value: 0.5881015849399707 |
|
name: Cosine Recall@10 |
|
- type: cosine_ndcg@10 |
|
value: 0.3037659752455345 |
|
name: Cosine Ndcg@10 |
|
- type: cosine_mrr@10 |
|
value: 0.2120033429995685 |
|
name: Cosine Mrr@10 |
|
- type: cosine_map@100 |
|
value: 0.22559046634335145 |
|
name: Cosine Map@100 |
|
- type: dot_accuracy@1 |
|
value: 0.0005579319323042589 |
|
name: Dot Accuracy@1 |
|
- type: dot_accuracy@3 |
|
value: 0.3696609013700329 |
|
name: Dot Accuracy@3 |
|
- type: dot_accuracy@5 |
|
value: 0.4739321802740066 |
|
name: Dot Accuracy@5 |
|
- type: dot_accuracy@10 |
|
value: 0.5881429132312525 |
|
name: Dot Accuracy@10 |
|
- type: dot_precision@1 |
|
value: 0.0005579319323042589 |
|
name: Dot Precision@1 |
|
- type: dot_precision@3 |
|
value: 0.12322030045667762 |
|
name: Dot Precision@3 |
|
- type: dot_precision@5 |
|
value: 0.09478643605480132 |
|
name: Dot Precision@5 |
|
- type: dot_precision@10 |
|
value: 0.05881429132312524 |
|
name: Dot Precision@10 |
|
- type: dot_recall@1 |
|
value: 0.0005579319323042589 |
|
name: Dot Recall@1 |
|
- type: dot_recall@3 |
|
value: 0.3696609013700329 |
|
name: Dot Recall@3 |
|
- type: dot_recall@5 |
|
value: 0.4739321802740066 |
|
name: Dot Recall@5 |
|
- type: dot_recall@10 |
|
value: 0.5881429132312525 |
|
name: Dot Recall@10 |
|
- type: dot_ndcg@10 |
|
value: 0.30380430047413587 |
|
name: Dot Ndcg@10 |
|
- type: dot_mrr@10 |
|
value: 0.2120435150827015 |
|
name: Dot Mrr@10 |
|
- type: dot_map@100 |
|
value: 0.22562658480145822 |
|
name: Dot Map@100 |
|
--- |
|
|
|
# SentenceTransformer based on sentence-transformers/all-mpnet-base-v2 |
|
|
|
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
- **Model Type:** Sentence Transformer |
|
- **Base model:** [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2) <!-- at revision f1b1b820e405bb8644f5e8d9a3b98f9c9e0a3c58 --> |
|
- **Maximum Sequence Length:** 384 tokens |
|
- **Output Dimensionality:** 768 tokens |
|
- **Similarity Function:** Cosine Similarity |
|
<!-- - **Training Dataset:** Unknown --> |
|
<!-- - **Language:** Unknown --> |
|
<!-- - **License:** Unknown --> |
|
|
|
### Model Sources |
|
|
|
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net) |
|
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) |
|
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) |
|
|
|
### Full Model Architecture |
|
|
|
``` |
|
SentenceTransformer( |
|
(0): Transformer({'max_seq_length': 384, 'do_lower_case': False}) with Transformer model: MPNetModel |
|
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) |
|
(2): Normalize() |
|
) |
|
``` |
|
|
|
## Usage |
|
|
|
### Direct Usage (Sentence Transformers) |
|
|
|
First install the Sentence Transformers library: |
|
|
|
```bash |
|
pip install -U sentence-transformers |
|
``` |
|
|
|
Then you can load this model and run inference. |
|
```python |
|
from sentence_transformers import SentenceTransformer |
|
|
|
# Download from the 🤗 Hub |
|
model = SentenceTransformer("richie-ghost/sentence-transformers-all-mpnet-base-v2") |
|
# Run inference |
|
sentences = [ |
|
'A man in black shirt sits on a stool while trying to sell stuffed animals.', |
|
'A man is sitting on a stool.', |
|
'A young lady is sitting on a bench at the bus stop.', |
|
] |
|
embeddings = model.encode(sentences) |
|
print(embeddings.shape) |
|
# [3, 768] |
|
|
|
# Get the similarity scores for the embeddings |
|
similarities = model.similarity(embeddings, embeddings) |
|
print(similarities.shape) |
|
# [3, 3] |
|
``` |
|
|
|
<!-- |
|
### Direct Usage (Transformers) |
|
|
|
<details><summary>Click to see the direct usage in Transformers</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Downstream Usage (Sentence Transformers) |
|
|
|
You can finetune this model on your own dataset. |
|
|
|
<details><summary>Click to expand</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Out-of-Scope Use |
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
--> |
|
|
|
## Evaluation |
|
|
|
### Metrics |
|
|
|
#### Information Retrieval |
|
* Dataset: `eval` |
|
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| cosine_accuracy@1 | 0.0005 | |
|
| cosine_accuracy@3 | 0.3696 | |
|
| cosine_accuracy@5 | 0.4739 | |
|
| cosine_accuracy@10 | 0.5881 | |
|
| cosine_precision@1 | 0.0005 | |
|
| cosine_precision@3 | 0.1232 | |
|
| cosine_precision@5 | 0.0948 | |
|
| cosine_precision@10 | 0.0588 | |
|
| cosine_recall@1 | 0.0005 | |
|
| cosine_recall@3 | 0.3696 | |
|
| cosine_recall@5 | 0.4739 | |
|
| cosine_recall@10 | 0.5881 | |
|
| cosine_ndcg@10 | 0.3038 | |
|
| cosine_mrr@10 | 0.212 | |
|
| cosine_map@100 | 0.2256 | |
|
| dot_accuracy@1 | 0.0006 | |
|
| dot_accuracy@3 | 0.3697 | |
|
| dot_accuracy@5 | 0.4739 | |
|
| dot_accuracy@10 | 0.5881 | |
|
| dot_precision@1 | 0.0006 | |
|
| dot_precision@3 | 0.1232 | |
|
| dot_precision@5 | 0.0948 | |
|
| dot_precision@10 | 0.0588 | |
|
| dot_recall@1 | 0.0006 | |
|
| dot_recall@3 | 0.3697 | |
|
| dot_recall@5 | 0.4739 | |
|
| dot_recall@10 | 0.5881 | |
|
| dot_ndcg@10 | 0.3038 | |
|
| dot_mrr@10 | 0.212 | |
|
| **dot_map@100** | **0.2256** | |
|
|
|
<!-- |
|
## Bias, Risks and Limitations |
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
--> |
|
|
|
<!-- |
|
### Recommendations |
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
--> |
|
|
|
## Training Details |
|
|
|
### Training Dataset |
|
|
|
#### Unnamed Dataset |
|
|
|
|
|
* Size: 48,393 training samples |
|
* Columns: <code>sentence_0</code> and <code>sentence_1</code> |
|
* Approximate statistics based on the first 1000 samples: |
|
| | sentence_0 | sentence_1 | |
|
|:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------| |
|
| type | string | string | |
|
| details | <ul><li>min: 6 tokens</li><li>mean: 18.73 tokens</li><li>max: 124 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 11.35 tokens</li><li>max: 62 tokens</li></ul> | |
|
* Samples: |
|
| sentence_0 | sentence_1 | |
|
|:---------------------------------------------------------------------|:------------------------------------------------------------------| |
|
| <code>A group of kids in red and white playing soccer.</code> | <code>There are kids playing ball in a soccer tournament.</code> | |
|
| <code>I had a great time at the theme park with my family.</code> | <code>Did you have fun at the theme park with your family?</code> | |
|
| <code>A black and white elderly gentlemen riding an am-track.</code> | <code>A man is on a train.</code> | |
|
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters: |
|
```json |
|
{ |
|
"scale": 20.0, |
|
"similarity_fct": "cos_sim" |
|
} |
|
``` |
|
|
|
### Training Hyperparameters |
|
#### Non-Default Hyperparameters |
|
|
|
- `eval_strategy`: steps |
|
- `per_device_train_batch_size`: 16 |
|
- `per_device_eval_batch_size`: 16 |
|
- `num_train_epochs`: 4 |
|
- `multi_dataset_batch_sampler`: round_robin |
|
|
|
#### All Hyperparameters |
|
<details><summary>Click to expand</summary> |
|
|
|
- `overwrite_output_dir`: False |
|
- `do_predict`: False |
|
- `eval_strategy`: steps |
|
- `prediction_loss_only`: True |
|
- `per_device_train_batch_size`: 16 |
|
- `per_device_eval_batch_size`: 16 |
|
- `per_gpu_train_batch_size`: None |
|
- `per_gpu_eval_batch_size`: None |
|
- `gradient_accumulation_steps`: 1 |
|
- `eval_accumulation_steps`: None |
|
- `torch_empty_cache_steps`: None |
|
- `learning_rate`: 5e-05 |
|
- `weight_decay`: 0.0 |
|
- `adam_beta1`: 0.9 |
|
- `adam_beta2`: 0.999 |
|
- `adam_epsilon`: 1e-08 |
|
- `max_grad_norm`: 1 |
|
- `num_train_epochs`: 4 |
|
- `max_steps`: -1 |
|
- `lr_scheduler_type`: linear |
|
- `lr_scheduler_kwargs`: {} |
|
- `warmup_ratio`: 0.0 |
|
- `warmup_steps`: 0 |
|
- `log_level`: passive |
|
- `log_level_replica`: warning |
|
- `log_on_each_node`: True |
|
- `logging_nan_inf_filter`: True |
|
- `save_safetensors`: True |
|
- `save_on_each_node`: False |
|
- `save_only_model`: False |
|
- `restore_callback_states_from_checkpoint`: False |
|
- `no_cuda`: False |
|
- `use_cpu`: False |
|
- `use_mps_device`: False |
|
- `seed`: 42 |
|
- `data_seed`: None |
|
- `jit_mode_eval`: False |
|
- `use_ipex`: False |
|
- `bf16`: False |
|
- `fp16`: False |
|
- `fp16_opt_level`: O1 |
|
- `half_precision_backend`: auto |
|
- `bf16_full_eval`: False |
|
- `fp16_full_eval`: False |
|
- `tf32`: None |
|
- `local_rank`: 0 |
|
- `ddp_backend`: None |
|
- `tpu_num_cores`: None |
|
- `tpu_metrics_debug`: False |
|
- `debug`: [] |
|
- `dataloader_drop_last`: False |
|
- `dataloader_num_workers`: 0 |
|
- `dataloader_prefetch_factor`: None |
|
- `past_index`: -1 |
|
- `disable_tqdm`: False |
|
- `remove_unused_columns`: True |
|
- `label_names`: None |
|
- `load_best_model_at_end`: False |
|
- `ignore_data_skip`: False |
|
- `fsdp`: [] |
|
- `fsdp_min_num_params`: 0 |
|
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} |
|
- `fsdp_transformer_layer_cls_to_wrap`: None |
|
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} |
|
- `deepspeed`: None |
|
- `label_smoothing_factor`: 0.0 |
|
- `optim`: adamw_torch |
|
- `optim_args`: None |
|
- `adafactor`: False |
|
- `group_by_length`: False |
|
- `length_column_name`: length |
|
- `ddp_find_unused_parameters`: None |
|
- `ddp_bucket_cap_mb`: None |
|
- `ddp_broadcast_buffers`: False |
|
- `dataloader_pin_memory`: True |
|
- `dataloader_persistent_workers`: False |
|
- `skip_memory_metrics`: True |
|
- `use_legacy_prediction_loop`: False |
|
- `push_to_hub`: False |
|
- `resume_from_checkpoint`: None |
|
- `hub_model_id`: None |
|
- `hub_strategy`: every_save |
|
- `hub_private_repo`: False |
|
- `hub_always_push`: False |
|
- `gradient_checkpointing`: False |
|
- `gradient_checkpointing_kwargs`: None |
|
- `include_inputs_for_metrics`: False |
|
- `eval_do_concat_batches`: True |
|
- `fp16_backend`: auto |
|
- `push_to_hub_model_id`: None |
|
- `push_to_hub_organization`: None |
|
- `mp_parameters`: |
|
- `auto_find_batch_size`: False |
|
- `full_determinism`: False |
|
- `torchdynamo`: None |
|
- `ray_scope`: last |
|
- `ddp_timeout`: 1800 |
|
- `torch_compile`: False |
|
- `torch_compile_backend`: None |
|
- `torch_compile_mode`: None |
|
- `dispatch_batches`: None |
|
- `split_batches`: None |
|
- `include_tokens_per_second`: False |
|
- `include_num_input_tokens_seen`: False |
|
- `neftune_noise_alpha`: None |
|
- `optim_target_modules`: None |
|
- `batch_eval_metrics`: False |
|
- `eval_on_start`: False |
|
- `eval_use_gather_object`: False |
|
- `batch_sampler`: batch_sampler |
|
- `multi_dataset_batch_sampler`: round_robin |
|
|
|
</details> |
|
|
|
### Training Logs |
|
| Epoch | Step | Training Loss | eval_dot_map@100 | |
|
|:------:|:-----:|:-------------:|:----------------:| |
|
| 0.1653 | 500 | 0.0446 | 0.2186 | |
|
| 0.3306 | 1000 | 0.0544 | 0.2226 | |
|
| 0.4959 | 1500 | 0.0419 | 0.2191 | |
|
| 0.6612 | 2000 | 0.0532 | 0.2210 | |
|
| 0.8264 | 2500 | 0.0438 | 0.2209 | |
|
| 0.9917 | 3000 | 0.0422 | 0.2220 | |
|
| 1.0 | 3025 | - | 0.2225 | |
|
| 1.1570 | 3500 | 0.021 | 0.2236 | |
|
| 1.3223 | 4000 | 0.0163 | 0.2243 | |
|
| 1.4876 | 4500 | 0.0158 | 0.2221 | |
|
| 1.6529 | 5000 | 0.0178 | 0.2221 | |
|
| 1.8182 | 5500 | 0.0154 | 0.2222 | |
|
| 1.9835 | 6000 | 0.0145 | 0.2228 | |
|
| 2.0 | 6050 | - | 0.2247 | |
|
| 2.1488 | 6500 | 0.0098 | 0.2250 | |
|
| 2.3140 | 7000 | 0.0076 | 0.2239 | |
|
| 2.4793 | 7500 | 0.0069 | 0.2253 | |
|
| 2.6446 | 8000 | 0.0073 | 0.2245 | |
|
| 2.8099 | 8500 | 0.0063 | 0.2245 | |
|
| 2.9752 | 9000 | 0.0074 | 0.2251 | |
|
| 3.0 | 9075 | - | 0.2251 | |
|
| 3.1405 | 9500 | 0.0044 | 0.2256 | |
|
| 3.3058 | 10000 | 0.0043 | 0.2259 | |
|
| 3.4711 | 10500 | 0.0038 | 0.2261 | |
|
| 3.6364 | 11000 | 0.0039 | 0.2256 | |
|
| 3.8017 | 11500 | 0.0037 | 0.2251 | |
|
| 3.9669 | 12000 | 0.0043 | 0.2256 | |
|
| 4.0 | 12100 | - | 0.2256 | |
|
|
|
|
|
### Framework Versions |
|
- Python: 3.10.12 |
|
- Sentence Transformers: 3.2.1 |
|
- Transformers: 4.44.2 |
|
- PyTorch: 2.5.0+cu121 |
|
- Accelerate: 1.0.1 |
|
- Datasets: 3.0.2 |
|
- Tokenizers: 0.19.1 |
|
|
|
## Citation |
|
|
|
### BibTeX |
|
|
|
#### Sentence Transformers |
|
```bibtex |
|
@inproceedings{reimers-2019-sentence-bert, |
|
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", |
|
author = "Reimers, Nils and Gurevych, Iryna", |
|
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", |
|
month = "11", |
|
year = "2019", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://arxiv.org/abs/1908.10084", |
|
} |
|
``` |
|
|
|
#### MultipleNegativesRankingLoss |
|
```bibtex |
|
@misc{henderson2017efficient, |
|
title={Efficient Natural Language Response Suggestion for Smart Reply}, |
|
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil}, |
|
year={2017}, |
|
eprint={1705.00652}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CL} |
|
} |
|
``` |
|
|
|
<!-- |
|
## Glossary |
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Authors |
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Contact |
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
--> |